Synlett 2016; 27(01): 75-79
DOI: 10.1055/s-0035-1560211
letter
© Georg Thieme Verlag Stuttgart · New York

Regioselective Suzuki–Miyaura Cross-Coupling Reactions of the Bis(triflate) of 1,4-Dihydroxy-9H-fluoren-9-one

Marcel Sonneck
a   Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
b   Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
,
David Kuhrt
a   Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
b   Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
,
Krisztina Kónya
c   Department of Organic Chemistry, University of Debrecen, 4032 Debrecen, Egyetem tér 1, Hungary
,
Tamás Patonay
c   Department of Organic Chemistry, University of Debrecen, 4032 Debrecen, Egyetem tér 1, Hungary
,
Alexander Villinger
a   Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
,
Peter Langer*
a   Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
b   Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
› Author Affiliations
Further Information

Publication History

Received: 24 June 2015

Accepted after revision: 08 August 2015

Publication Date:
23 September 2015 (online)


Dedicated to Professor Steven V. Ley on the occasion of his 70th birthday

Abstract

1,4-Diaryl-9H-fluoren-9-ones were prepared by regioselective Suzuki–Miyaura cross-coupling reaction of the bis(triflate) of 1,4-dihydroxy-9H-fluoren-9-one. The reactions proceeded with excellent site selectivity. The first attack occurs at position 1, due to electronic reasons.

 
  • References and Notes

  • 1 Campo MA, Larock RC. J. Org. Chem. 2002; 67: 5616 ; and references cited therein
  • 2 Perry PJ, Read MA, Davies RT, Gowan SM, Reszka AP, Wood AA, Kelland LR, Neidle S. J. Med. Chem. 1999; 42: 2679
  • 8 Burke SM, Joullie MM. Synth. Commun. 1976; 6: 371
  • 10 Goel A, Chaurasia S, Dixit M, Kumar V, Parakash S, Jena B, Verma JK, Jain M, Anand RS, Manoharan S. Org. Lett. 2009; 11: 1289 ; and references cited therein
  • 11 Reim S, Lau M, Adeel M, Hussain I, Yawer MA, Riahi A, Ahmed Z, Fischer C, Reinke H, Langer P. Synthesis 2009; 445

    • For reviews of cross-coupling reactions of polyhalogenated heterocycles, see:
    • 12a Schröter S, Stock C, Bach T. Tetrahedron 2005; 61: 2245
    • 12b Schnürch M, Flasik R, Khan AF, Spina M, Mihovilovic MD, Stanetty P. Eur. J. Org. Chem. 2006; 3283

      For Suzuki–Miyaura reactions of bis(triflates) from our laboratory, see, for example:
    • 13a Methyl 2,5-dihydroxybenzoate: Nawaz M, Ibad MF, Abid O.-U.-R, Khera RA, Villinger A, Langer P. Synlett 2010; 150
    • 13b Alizarin: Mahal A, Villinger A, Langer P. Synlett 2010; 1085 3,4
    • 13c Dihydroxybenzophenone: Nawaz M, Khera RA, Malik I, Ibad MF, Abid O.-UR, Villinger A, Langer P. Synlett 2010; 979
    • 13d Phenyl 1,4-dihydroxynaphthoate: Abid O.-U.-R, Ibad MF, Nawaz M, Ali A, Sher M, Rama NH, Villinger A, Langer P. Tetrahedron Lett. 2010; 51: 1541
    • 13e 5,10-Dihydroxy-11H-benzo[b]fluoren-11-one: Ali A, Hussain MA, Villinger A, Langer P. Synlett 2010; 3031
  • 14 Synthesis of 9-Oxo-9H-fluorene-1,4-diaryl-bis(trifluoromethanesulfonate) (2) To a CH2Cl2 solution (150 mL) of 1 (1.8 g, 8.543 mmol) was added dry pyridine (10 mL), and the solution was cooled to –78 °C under argon atmosphere. Then Tf2O (5.785 g, 20.503 mmol, 2.4 equiv) was added dropwise to the solution and stirred for 20 h at r.t. After removal of the solvent with reduced pressure H2O (100 mL) was added to the resulting oil, and the precipitate was filtered off and recrystallized with hot heptane. After cooling to r.t., the precipitated pure product 2 was filtered and washed with heptane. To obtain the residual product, the heptane was concentrated under vacuum, and the product 2 was isolated by column chromatography (silica gel; heptane–EtOAc, 3:1) as a yellow fluffy solid (3.318 g, 82%); mp 131–133 °C. 1H NMR (300 MHz, CDCl3): δ = 7.88 (d, 3 J = 7.6 Hz, 1 H, ArH), 7.78 (d, 3 J = 7.4 Hz, 1 H, ArH), 7.64 (dt, 3 J = 7.6 Hz, 4 J = 1.2 Hz, 1 H, ArH), 7.53 (d, 3 J = 9.1 Hz, 1 H, ArH), 7.48 (dt, 3 J = 7.5 Hz, 4 J = 0.9 Hz, 1 H, ArH), 7.21 (d, 3 J = 9.1 Hz, 1 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 187.40 (CO), 144.29, 143.06, 139.32, 138.13 (C), 136.09 (CH), 133.49 (C), 131.48 (CH), 129.39 (C), 127.62 (CH), 125.70, 124.5, 124.38 (C), 118.85 (q, J F,C = 321.00 Hz, CF3), 118.66 (q, J F,C = 321.00 Hz, CF3). 19F NMR (282 MHz, CDCl3): δ = –73.02 (CF3), –73.17 (CF3). IR (ATR): ν = 3104.6 (w), 3089 (w), 2921 (w), 2849 (w), 1726 (s), 1427 (s), 1224 (s), 1207 (s), 1166 (m), 1134 (s), 1104 (m), 905 (s), 886 (s), 845 (s), 812 (m), 803 (s), 762 (m), 754 (s), 598 (s) cm–1. MS (EI, 70eV): m/z = 476 (52) [M+], 343 (13), 279 (100), 251 (49), 223 (35), 185 (14), 154 (16), 128 (33), 100 (12), 69 (43). HRMS (EI): m/z calcd for C15H6F6O7S2 [M+]: 475.94536; found: 475.94491. Anal. Calcd for C15H6F6O7S2 (476.32): C, 37.82; H, 1.27. Found: C, 37.92; H, 1.08.
  • 15 General Procedure for the Synthesis of 4a–h In a pressure tube 2 (0,315 mmol), K3PO4 (3.0 equiv), Pd(PPh3)4 (6.0 mol%), and arylboronic acid (2.4 equiv) were mixed with dry 1,4-dioxane, degassed with argon und stirred for 12 h at 100 °C. After cooling to r.t. the solution was filtered through Celite, washed with CH2Cl2, and the filtrate was concentrated by reduced pressure. The residue was purified by column chromatography to receive the bis-substituted fluorenone 4ah in good yields.
  • 16 1,4-Bis-(3,4-dimethoxyphenyl)-9H-fluoren-9-one (4a) Starting with 2 (150 mg, 0.315 mmol), 3a (138 mg, 0.756 mmol, 2.4 equiv), Pd(PPh3)4 (22 mg, 0.018 mmol, 6 mol%), K3PO4 (200 mg, 0.945 mmol, 3.0 equiv), and 1,4-dioxane (5 mL). After purification by column chromatography (silica gel; heptane–EtOAc, 1:1) 4a was isolated as an orange solid (138 mg, 97%); mp 192–194 °C. 1H NMR (300 MHz, CDCl3): δ = 7.62–7.58 (m, 1 H, ArH), 7.34 (d, J = 7.9 Hz, 1 H, ArH), 7.23 (d, J = 7.9 Hz, 1 H, ArH), 7.21–7.17 (m, 2 H, ArH), 7.15–7.11 (m, 2 H, ArH), 7.02 (s, 2 H, ArH), 6.97 (d, J = 9.2 Hz, 2 H, ArH), 6.81–6.75 (m, 1 H, ArH), 4.00 (s, 3 H, OCH3), 3.95 (s, 3 H, OCH3), 3.94 (s, 3 H, OCH3), 3.89 (s, 3 H, OCH3). 13C NMR (75 MHz, CDCl3): δ = 193.09 (CO), 149.35, 149.18, 149.11, 148.43, 143.72, 142.41, 141.17, 136.87 (C), 136.41 (CH), 134.80 (C), 134.20 (CH), 132.29 (C), 131.35 (CH), 130.18 (C), 128.85, 124.03, 123.30, 121.88, 121.20, 113.09, 112.26, 111.57, 110.82 (CH), 56.15, 5615 (OCH3), 56.06, 56.06 (OCH3). IR (ATR): ν = 3008 (w), 2955 (w), 2933 (w), 2905 (w), 2838 (w), 2627 (w), 2577 (w), 1701 (m), 1519 (m), 1441 (s), 1251 (s), 1222 (s), 1146 (s), 1020 (s), 746 (s) cm–1. MS (EI, 70 eV): m/z = 452 (100) [M+], 437 (9), 263 (4); 250 (4), 226 (5), 132 (4). HRMS (ESI-TOF/MS): m/z calcd for C29H24O5 [M + H]+: 453.16965; found: 453.16995; m/z calcd for C29H24O5 [M + Na]+: 475.15159; found: 475.15191.
  • 17 General Procedure for the Synthesis of 5a–h In a pressure tube 2 (0.525 mmol), K3PO4 (2.0 equiv), Pd(PPh3)4 (3.0 mol%), and arylboronic acid (1.2 equiv) were mixed with dry 1,4-dioxane, degassed with argon und stirred for 12 h at 60 °C. After cooling to r.t., the solution was filtered through Celite, washed with CH2Cl2, and the filtrate was concentrated by reduced pressure. The residue was purified by column chromatography to receive the monosubstituted fluorenone 5ah in good yields.
  • 18 1-(4′-Hydroxyphenyl)-9-oxo-9H-fluoren-4-yl-trifluoromethanesulfonate (5f) Starting with 2 (150 mg, 0.315 mmol), 3f (53 mg, 0.378 mmol, 1.2 equiv), Pd(PPh3)4 (11 mg, 0.009 mmol, 3 mol%), K3PO4 (134 mg,0.63 mmol, 2.0 equiv), and 1,4-dioxane (9 mL). After purification by column chromatography (silica gel; heptane–EtOAc, 6:1) 5f was isolated as deep yellow solid (112 mg, 86%); mp 194–196 °C. 1H NMR (300 MHz, DMSO): δ = 9.75 (s, 1 H, OH), 7.80–7.69 (m, 2 H, ArH), 7.64 (t, J = 7.2 Hz, 2 H, ArH), 7.51 (t, J = 7.2 Hz, 1 H, ArH), 7.40 (m, 3 H, ArH), 6.83 (d, J = 8.6 Hz, 2 H, ArH). 13C NMR (63 MHz, CDCl3): δ = 190.03 (CO), 158.21, 142.34, 141.91, 138.63, 135.74 (C), 135.49, 134.00 (CH), 133.54, 133.58 (C), 130.81, 130.81, 130.68, 127.34 (CH), 126.01 (C), 124.47, 123.03 (CH), 118.06 (q, J F,C = 320.70 Hz, CF3), 114.73, 114.73 (CH). 19F NMR (282 MHz, CDCl3): δ = –73.13 (CF3). IR (ATR): ν = 3320 (w), 3019 (w), 2920 (w), 2850 (w), 1699 (m), 1422 (s), 1205 (s), 1137 (s), 825 (s), 608 (s), 585 (s), 567 (s), 547 (m), 527 (s) cm–1. MS (EI, 70eV): m/z = 420 (28) [M+], 287 (100), 259 (22), 231 (7), 202 (22), 176 (4), 150 (2), 101 (5), 69 (8). HRMS (EI): m/z calcd for C20H11F3O5S1 [M+]: 420.02738; found: 420.02764. Anal. Calcd for C20H11F3O5S (420.36): C, 57.15; H, 2.64. Found: C, 57.23; H, 2.52.
  • 19 CCDC-1416855 contains all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: +44(1223)336033; or deposit@ccdc.cam.ac.uk.
  • 20 General Procedure for the Synthesis of 6a–g In a pressure tube 5ae,g, K3PO4 (2.0 equiv), Pd(PPh3)4 (5.0 mol%), and arylboronic acid (1.2 equiv) were mixed with dry 1,4-dioxane, degassed with argon and stirred for 12 h at 100 °C. After cooling to r.t. the solution was filtered through Celite, washed with CH2Cl2, and the filtrate was concentrated by reduced pressure. The residue was purified by column chromatography to receive the cross-substituted fluorenone 6ag in good yields.
  • 21 1-(5′-Fluoro-2′-methoxyphenyl)-4-(4′′-methoxyphenyl)-9H-fluoren-9-one (6a) Starting with 5g (75 mg, 0.166 mmol), 3b (30 mg, 0.199 mmol, 1.2 equiv), Pd(PPh3)4 (9 mg, 0.008 mmol, 5 mol%), K3PO4 (67 mg, 0.315 mmol, 2.0 equiv), and 1,4-dioxane (3 mL). After purification by column chromatography (silica gel; heptane–EtOAc, 4:1) 6a was isolated as a deep yellow solid (67 mg, 99%); mp 193–195 °C. 1H NMR (300 MHz, CDCl3): δ = 7.58–7.52 (m, 1 H, ArH), 7.45–7.39 (m, 2 H, ArH), 7.34 (d, J = 7.9 Hz, 1 H, ArH), 7.20–7.14 (m, 3 H, ArH), 7.13–7.03 (m, 3 H, ArH), 7.01 (dd, J = 8.7, 3.1 Hz, 1 H, ArH), 6.93 (dd, J = 9.0, 4.4 Hz, 1 H, ArH), 6.84–6.78 (m, 1 H, ArH), 3.92 (OCH3), 3.74 (OCH3). 13C NMR (75 MHz, CDCl3): δ = 192.72 (CO), 159.71 (OCH3), 156.92 (d, 2 J F,C = 238.5 Hz, CF), 153.52 (d, 4 J = 2.0 Hz, COCH3), 144.11, 137.45 (C), 136.57 (CH), 135.42 (d, 4 J F,C = 3.1 Hz, CH), 134.72 (C), 134.16 (CH), 131.95, 131.61 (C), 131.25, 130.22, 130.22 (CH), 128.68 (d, J = 6.6 Hz, CH), 123.94, 123.24 (CH), 117.23 (d, 2 J F,C = 23.7 Hz, CH), 115.33 (d, 2 J F,C = 22.6 Hz, CH), 114,29 (CH), 111.67 (d, 3 J F,C = 8.2 Hz, CH), 56.33 (OCH3), 55.52 (OCH3). 19F NMR (282 MHz, CDCl3): δ = –124.53 (CF). IR (ATR): ν = 3392 (w), 3068 (w), 3000 (w), 2957 (w), 2945 (w), 2914 (w), 2835 (w), 1704 (s), 1483 (s), 1469 (s), 1175 (s), 1026 (s), 940 (s), 764 (s) cm–1. MS (EI, 70eV): m/z = 410 (35) [M+], 379 (100), 294 (6), 190 (8), 153 (5). HRMS (EI): m/z calcd for C27H19F1O3 [M+]: 410.13127; found: 410.13077.
  • 22 Handy ST, Zhang Y. Chem. Commun. 2006; 299