Synlett 2016; 27(04): 604-610
DOI: 10.1055/s-0035-1560367
letter
© Georg Thieme Verlag Stuttgart · New York

Microwave-Assisted Metal- and Ligand-Free O-Arylation of Quinolones Using Diaryliodonium Salts: An Easy and Rapid Synthesis of Aryloxyquinolines

Manish Kumar Mehra
Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, India   Email: dalipk@pilani.bits-pilani.ac.in
,
Mukund P. Tantak
Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, India   Email: dalipk@pilani.bits-pilani.ac.in
,
Indresh Kumar
Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, India   Email: dalipk@pilani.bits-pilani.ac.in
,
Dalip Kumar*
Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, India   Email: dalipk@pilani.bits-pilani.ac.in
› Author Affiliations
Further Information

Publication History

Received: 19 August 2015

Accepted after revision: 05 October 2015

Publication Date:
16 November 2015 (online)


Abstract

A microwave-assisted metal- and ligand-free direct O-arylation of quinolones has been achieved by employing easily accessible diaryliodonium salts in the presence of a base to afford various aryloxyquinolines in good yields. The operationally simple and rapid protocol has also been utilized for the construction of biologically important benzofuro[3,2-c]quinolines.

Supporting Information

 
  • References and Notes

  • 1 Janz K, Kaila N. J. Org. Chem. 2009; 74: 8874
  • 2 Falke H, Chaikuad A, Becker A, Loaëc N, Lozach O, Abu Jhaisha S, Becker W, Jones PG, Preu L, Baumann K, Knapp S, Meijer L, Kunick C. J. Med. Chem. 2015; 58: 3131
  • 3 Korotchenko V, Sathunuru R, Gerena L, Caridha D, Li Q, Kreishman-Deitrick M, Smith PL, Lin AJ. J. Med. Chem. 2015; 58: 3411
  • 4 Soares RR, da Silva JM. F, Carlos BC, da Fonseca CC, de Souza LS. A, Lopes FV, de Paula Dias RM, Moreira PO. L, Abramo C, Viana GH. R, de Pila Varotti F, da Silva AD, Scopel KK. G. Bioorg. Med. Chem. Lett. 2015; 25: 2308
  • 5 Medapi B, Renuka J, Saxena S, Sridevi JP, Medishetti R, Kulkarni P, Yogeeswari P, Sriram D. Bioorg. Med. Chem. 2015; 23: 2062
  • 6 Pandey AK, Sharma R, Shivahare R, Arora A, Rastogi N, Gupta S, Chauhan PM. S. J. Org. Chem. 2013; 78: 1534
  • 7 Cai Z, Zhou W, Pan J, Hao Q, Zhang L. J. Chin. Pharm. Sci. 2010; 19: 15
  • 8 Ries UJ, Priepke HW, Hauel NH, Haaksma EE, Stassen JM, Wienen W, Nar H. Bioorg. Med. Chem. Lett. 2003; 13: 2291
  • 9 Qi B, Mi B, Zhai X, Xu Z, Zhang X, Tian Z, Gong P. Bioorg. Med. Chem. 2013; 21: 5246
  • 10 Maiti D, Buchwald SL. J. Org. Chem. 2010; 75: 1791
  • 11 Zhao J, Peng C, Liu L, Wang Y, Zhu Q. J. Org. Chem. 2010; 75: 7502
  • 12 Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
  • 13 Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
  • 14 Bellina F, Rossi R. Tetrahedron 2009; 65: 10269
  • 15 Yusubov MS, Maskaev AV, Zhdankin VV. ARKIVOC 2011; (i): 370
  • 16 Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219
  • 17 Ackermann L, Dell’Acqua M, Fenner S, Vicente R, Sandmann R. Org. Lett. 2011; 13: 2358
  • 18 Umierski N, Manolikakes G. Org. Lett. 2013; 15: 188
  • 19 Jalalian N, Ishikawa EE, Silva LF, Olofsson B. Org. Lett. 2011; 13: 1552
  • 20 Lindstedt E, Ghosh R, Olofsson B. Org. Lett. 2013; 15: 6070
  • 21 Ghosh R, Olofsson B. Org. Lett. 2014; 16: 1830
  • 22 Thorat PB, Waghmode NA, Karade NN. Tetrahedron Lett. 2014; 55: 5718
  • 23 Kumar D, Arun V, Pilania M, Shekar K. Synlett 2013; 24: 831
  • 24 Kumar D, Pilania M, Arun V, Pooniya S. Org. Biomol. Chem. 2014; 12: 6340
  • 25 Bielawski M, Aili D, Olofsson B. J. Org. Chem. 2008; 73: 4602
  • 26 Bielawski M, Olofsson B. Chem. Commun. 2007; 2521
  • 27 Chun J.-H, Lu S, Pike VW. Eur. J. Org. Chem. 2011; 2011: 4439
  • 28 Jayashree BS, Thomas S, Nayak Y. Med. Chem. Res. 2010; 19: 193
  • 29 Huang L.-J, Hsieh M.-C, Teng C.-M, Lee K.-H, Kuo S.-C. Bioorg. Med. Chem. 1998; 6: 1657
  • 30 Synthesis of Aryloxyquinolines; General Procedure: A mixture of quinolone (0.62 mmol), diaryliodonium salt (0.62 mmol) and potassium carbonate (260 mg, 1.88 mmol) in toluene (1 mL) or DMF (2–3 drops) was irradiated in a CEM Discover MW reactor (100 W power) at 100 °C for 5 min. Upon completion of the reaction, as indicated by TLC, solvent was removed and the residue was dissolved in dichloromethane (20 mL). To this solution, water (20 mL) was added and the mixture stirred at room temperature for 10 min. The organic phase was separated, washed with brine (2 × 15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude product thus obtained was purified by silica gel (100–200) column chromatography to afford the pure aryloxyquinoline. 4-Methyl-2-phenoxyquinoline (6a): Yield: 119 mg (81%); off-white solid; mp 76–77 °C. 1H NMR (400 MHz, CDCl3): δ = 7.94 (dd, J = 8.3, 1.2 Hz, 1 H), 7.80 (dd, J = 8.4, 0.7 Hz, 1 H), 7.66–7.62 (m, 1 H), 7.56–7.53 (m, 2 H), 7.50–7.46 (m, 1 H), 7.28 (s, 1 H), 7.18–7.15 (m, 2 H), 6.96 (d, J = 0.9 Hz, 1 H), 2.71 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 161.0, 153.0, 148.5, 146.2, 132.5, 129.7, 128.4, 126.0, 124.9, 123.7, 123.3, 117.3, 112.7, 18.9. IR (KBr): 1612, 1574, 1512, 1481, 1381, 1342, 1219, 825, 756 cm–1. MS (ESI): m/z [M + H]+ calcd for C16H17NO: 236.1; found: 236.2. 4-Phenoxyquinoline(8a): Yield: 122 mg (80%); yellow liquid. 1H NMR (400 MHz, CDCl3): δ = 8.68 (d, J = 5.2 Hz, 1 H), 8.44–8.33 (m, 1 H), 8.12 (d, J = 8.5 Hz, 1 H), 7.78–7.73 (m, 1 H), 7.59–7.55 (m, 1 H), 7.49–7.44 (m, 2 H), 7.33–7.27 (m, 1 H), 7.22–7.16 (m, 2 H), 6.55 (d, J = 5.2 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 161.9, 154.4, 151.1, 149.7, 130.3, 130.1, 129.0, 126.1, 125.6, 121.8, 121.5, 121.1, 104.3. IR (KBr): 1566, 1489, 1420, 1389, 1304, 1211, 771 cm–1. MS (ESI): m/z [M + H]+ calcd for C15H12NO: 222.0; found: 222.1.
  • 31 David E, Pellet-Rostaing S, Lemaire M. Tetrahedron 2007; 63: 8999
  • 32 Chen Y.-L, Chung C.-H, Chen I.-L, Chen P.-H, Jeng H.-Y. Bioorg. Med. Chem. 2002; 10: 2705