Synthesis 2016; 48(06): 893-905
DOI: 10.1055/s-0035-1560398
paper
© Georg Thieme Verlag Stuttgart · New York

Three-Step Synthesis of 3-Aminoseptanoside Derivatives by Using Lithiated Methoxyallene and δ-Siloxynitrones

Marcin Jasiński*
a   Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland   Email: mjasinski@uni.lodz.pl
,
Greta Utecht
a   Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland   Email: mjasinski@uni.lodz.pl
,
Andrzej Fruziński
b   Institute of General and Ecological Chemistry, Łódź University of Technology, Żeromskiego 115, 90-924 Łódź, Poland
,
Hans-Ulrich Reissig
c   Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany   Email: hans.reissig@chemie.fu-berlin.de
› Author Affiliations
Further Information

Publication History

Received: 24 September 2015

Accepted after revision: 04 November 2015

Publication Date:
04 January 2016 (online)


Dedicated to Professor Grzegorz Mlostoń on the occasion of his 65th birthday

Abstract

A three-step approach to enantiomerically pure 3-aminoseptanoside derivatives by addition of lithiated methoxyallene to δ-silylated aldopentose-derived nitrones, followed by Brønsted acid mediated cyclization and chemoselective N–O bond scission is presented. For the addition of the methoxyallene anion leading to 3,6-dihydro-1,2-oxazines, excellent syn-diastereoselectivities were observed in the case of d-xylose- and l-arabinose-derived nitrones, whereas the d-ribose analogue provided syn- and anti-configured products in an approximately 2:1 ratio. Subsequent proton-induced reactions provided the corresponding dimethyl ketals as kinetic products, which slowly converted into bicyclic oxepanoides formed in a highly cis-selective manner. The final reductive ring opening was performed in good yields by using an excess of samarium(II) iodide. With a selected compound it was demonstrated that this type of product is a suitable precursor for the preparation of polyfunctionalized oxepanopyrrolidine derivatives.

Supporting Information

 
  • References

  • 1 Responsible for X-ray crystal-structure determination.
    • 2a Hoberg JO. Tetrahedron 1998; 54: 12631
    • 2b Belen’kii LI. Oxepanes and Oxepines . In Comprehensive Heterocyclic Chemistry III . Vol. 13. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008. Chap. 13.02, 45
    • 2c Piva O. Synthesis of Seven-Membered Ring Ethers and Lactones. In Synthesis of Saturated Oxygenated Heterocycles II. Cossy J. Springer; Berlin: 2014: 283
    • 3a Bozó E, Boros S, Párkányi L, Kuszmann J. Carbohydr. Res. 2000; 329: 269
    • 3b Castro S, Duff M, Snyder NL, Morton M, Kumar CV, Peczuh MW. Org. Biomol. Chem. 2005; 3: 3869
    • 3c Pakulski Z. Pol. J. Chem. 2006; 80: 1293
    • 3d Sabatino D, Damha MJ. J. Am. Chem. Soc. 2007; 129: 8259
    • 3e Duff MR. Jr, Fyvie WS, Markad SD, Frankel AE, Kumar CV, Gascón JA, Peczuh MW. Org. Biomol. Chem. 2011; 9: 154
    • 3f Saha J, Peczuh MW. Adv. Carbohydr. Chem. Biochem. 2011; 66: 121
    • 4a Contour MO, Fayet C, Gelas J. Carbohydr. Res. 1990; 201: 150
    • 4b Ng CJ, Stevens JD. Carbohydr. Res. 1996; 284: 241
    • 4c Castro S, Peczuh MW. J. Org. Chem. 2005; 70: 3312
    • 4d Tauss A, Steiner AJ, Stütz AE, Tarling CA, Withers SG, Wrodnigg TM. Tetrahedron: Asymmetry 2006; 17: 234
    • 4e Sizun G, Dukhan D, Griffon J.-F, Griffe L, Meillon J.-C, Leroy F, Storer R, Sommadossi J.-P, Gosselin G. Carbohydr. Res. 2009; 344: 448
    • 4f Venukumar P, Sudharani C, Sridhar PR. Chem. Commun. 2014; 50: 2218
    • 5a Ovaa H, Leeuvenburgh MA, Overkleeft HS, van der Marel GA, van Boom JA. Tetrahedron Lett. 1998; 39: 3025
    • 5b Peczuh MW, Snyder NL. Tetrahedron Lett. 2003; 44: 4057
    • 5c Schmidt B, Biernat A. Chem. Eur. J. 2008; 14: 6135
    • 5d Schmidt B, Biernat A. Org. Lett. 2008; 10: 105
    • 6a Hoberg JO, Bozell JJ. Tetrahedron Lett. 1995; 36: 6831
    • 6b Cousins GS, Hoberg JO. Chem. Soc. Rev. 2000; 29: 165
    • 6c Ganesh NV, Jayaraman N. J. Org. Chem. 2007; 72: 5500
    • 6d Batchelor R, Harvey JE, Northcote PT, Teesdale-Spittle P, Hoberg JO. J. Org. Chem. 2009; 74: 7627
    • 6e Ganesh NV, Jayaraman N. J. Org. Chem. 2009; 74: 739
    • 6f Hewitt RJ, Harvey JE. J. Org. Chem. 2010; 75: 955
    • 6g Ganesh NV, Raghothama S, Sonti R, Jayaraman N. J. Org. Chem. 2010; 75: 215
    • 6h Dey S, Jayaraman N. Beilstein J. Org. Chem. 2012; 8: 522
    • 6i Dey S, Jayaraman N. Carbohydr. Res. 2014; 399: 49
    • 7a Saha J, Peczuh MW. Org. Lett. 2009; 11: 4482
    • 7b Vannam R, Peczuh MW. Org. Lett. 2013; 15: 4122
    • 8a Alcázar E, Pletcher JM, McDonald FE. Org. Lett. 2004; 6: 3877
    • 8b Boone MA, McDonald FE, Lichter J, Lutz S, Cao R, Hardcastle KI. Org. Lett. 2009; 11: 851
  • 9 Köver A, Matheu MI, Díaz Y, Castillón S. ARKIVOC 2007; (iv): 364
  • 10 Wang Z.-X, Miller SM, Anderson OP, Shi Y. J. Org. Chem. 1999; 64: 6443

    • For selected recent examples, see:
    • 11a Schmiedel VM, Stefani S, Reissig H.-U. Beilstein J. Org. Chem. 2013; 9: 2564
    • 11b Bera MK, Domínguez M, Hommes P, Reissig H.-U. Beilstein J. Org. Chem. 2014; 10: 394
    • 11c Jasiński M, Mlostoń G, Stolarski M, Costa W, Domínguez M, Reissig H.-U. Chem. Asian J. 2014; 9: 2641

    • For reviews, see:
    • 11d Zimmer R, Reissig H.-U. Chem. Soc. Rev. 2014; 43: 2888
    • 11e Zimmer R, Reissig H.-U. Allenes in Multicomponent Synthesis of Heterocycles. In Multicomponent Reactions in Organic Synthesis. Zhu J, Wang Q, Wang M.-X. Wiley-VCH; Weinheim: 2015: 301
    • 12a Schade W, Reissig H.-U. Synlett 1999; 632
    • 12b Pulz R, Cicchi S, Brandi A, Reissig H.-U. Eur. J. Org. Chem. 2003; 1153
    • 12c Al-Harrasi A, Reissig H.-U. Synlett 2005; 1152
    • 12d Helms M, Schade W, Pulz R, Watanabe T, Al-Harrasi A, Fišera L, Hlobilová I, Zahn G, Reissig H.-U. Eur. J. Org. Chem. 2005; 1003
    • 12e Dekaris V, Reissig H.-U. Synlett 2010; 42
    • 12f Jasiński M, Lentz D, Reissig H.-U. Beilstein J. Org. Chem. 2012; 8: 662
    • 12g Parmeggiani C, Cardona F, Giusti L, Reissig H.-U, Goti A. Chem. Eur. J. 2013; 19: 10595
    • 12h Jasiński M, Moreno-Clavijo E, Reissig H.-U. Eur. J. Org. Chem. 2014; 442
    • 13a Al-Harrasi A, Reissig H.-U. Angew. Chem. Int. Ed. 2005; 44: 6227 ; Angew. Chem. 2005, 117, 6383
    • 13b Al-Harrasi A, Pfrengle F, Prisyazhnyuk V, Yekta S, Koóš P, Reissig H.-U. Chem. Eur. J. 2009; 15: 11632
    • 13c Pfrengle F, Reissig H.-U. Chem. Eur. J. 2010; 16: 11915
    • 13d Bouché L, Kandziora M, Reissig H.-U. Beilstein J. Org. Chem. 2014; 10: 213
    • 13e Salta J, Dernedde J, Reissig H.-U. Beilstein J. Org. Chem. 2015; 11: 638
    • 13f Salta J, Reissig H.-U. Synthesis 2015; 47: 1893
    • 13g Kandziora M, Reissig H.-U. Eur. J. Org. Chem. 2015; 370
    • 13h Kandziora M, Mucha E, Zucker SP, Reissig H.-U. Synlett 2015; 26: 367
    • 14a Bressel B, Egart B, Al-Harrasi A, Pulz R, Reissig H.-U, Brüdgam I. Eur. J. Org. Chem. 2008; 467
    • 14b Dekaris V, Bressel B, Reissig H.-U. Synlett 2010; 47
    • 14c Jasiński M, Lentz D, Moreno-Clavijo E, Reissig H.-U. Eur. J. Org. Chem. 2012; 3304
    • 15a Chakraborty B, Sharma PK, Rai N, Sharma CD. J. Chem. Sci. 2012; 124: 679
    • 15b Chakraborty B, Sharma CD. Tetrahedron Lett. 2013; 54: 5532
  • 16 Dondoni A, Perrone D. Tetrahedron 2003; 59: 4261
  • 17 Hoff S, Brandsma L, Arens JF. Recl. Trav. Chim. Pays-Bas 1968; 87: 916
  • 18 Maciaszczyk J, Jasiński M. Tetrahedron: Asymmetry 2015; 26: 510
    • 19a Chiara JL, Destabel C, Gallego P, Marco-Contelles J. J. Org. Chem. 1996; 61: 359
    • 19b Jung SH, Lee JE, Koh HY. Bull. Korean Chem. Soc. 1998; 19: 33
    • 19c Keck GE, Wager TT, McHardy SF. Tetrahedron 1999; 55: 11755
    • 19d Pulz R, Al-Harrasi A, Reissig H.-U. Org. Lett. 2002; 4: 2353
    • 19e Revuelta J, Cicchi S, Brandi A. Tetrahedron Lett. 2004; 45: 8375
    • 19f Bressel B, Reissig H.-U. Org. Lett. 2009; 11: 527
    • 19g Dekaris V, Pulz R, Al-Harrasi A, Lentz D, Reissig H.-U. Eur. J. Org. Chem. 2011; 3210
    • 19h Jasiński M, Watanabe T, Reissig H.-U. Eur. J. Org. Chem. 2013; 605
  • 20 Compound 23c is probably formed as a result of Sm(III) activation of the free hydroxyl group of 22c, followed by spontaneous SN2 ring closure, rather than via redox processes. For SmI2-mediated ring contraction in 3,6-dihydro-2H-1,2-oxazines, see ref. 19h.

    • For reports on the dehydrogenation of alcohols, see:
    • 21a Smith GV, Notheisz F. Hydrogenolysis of Benzyl–Nitrogen Bonds . In Heterogeneous Catalysis in Organic Chemistry . Academic Press; San Diego: 1999. Chap. 4.2.1.1, 161
    • 21b Fu X, Cook JM. J. Am. Chem. Soc. 1992; 114: 6910
    • 21c Fu X, Cook JM. J. Org. Chem. 1993; 58: 661
    • 22a Stick RV, Williams SJ. Synthesis and Protecting Groups In Carbohydrates: The Essential Molecules of Life. Elsevier; Amsterdam: 2009. Chap. 2, 35

    • For selected examples of Birch-type debenzylations, see:
    • 22b Iserloh U, Dudkin V, Wang Z.-G, Danishefsky SJ. Tetrahedron Lett. 2002; 43: 7027
    • 22c Werz DB, Seeberger PH. Angew. Chem. Int. Ed. 2005; 44: 6315 ; Angew. Chem. 2005, 117, 6474
    • 22d Cumpstey I, Ramstadius C, Akhtar T, Goldstein IJ, Winter HC. Eur. J. Org. Chem. 2010; 1951
    • 22e Liu Z, Bittman R. Org. Lett. 2012; 14: 620
    • 23a Fall Y, Gomez G, Fernandez C. Tetrahedron Lett. 1999; 40: 8307
    • 23b Pérez M, Canoa P, Gomez G, Teijeira M, Fall Y. Synthesis 2005; 411
  • 24 Gottlieb HE, Kotlyar V, Nudelman A. J. Org. Chem. 1997; 62: 7512
  • 25 Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112
  • 26 Sheldrick GM. Acta Crystallogr., Sect. C 2015; 71: 3
  • 27 Nishiyama K, Kamiya A, Hammam MA. S, Kinoshita H, Fujinami S, Ukaji Y, Inomata K. Bull. Chem. Soc. Jpn. 2010; 83: 1309
  • 28 The 1H NMR spectrum of cis-21c taken at room temperature showed a series of very broad signals, which could be resolved at 403 K (DMSO-d 6); however, partial decomposition of the material was observed at this temperature. In the case of longer-time experiments (e.g., 13C NMR, HMQC), the appearance of a new set of signals made correct assignments difficult.
    • 29a Imamoto T, Ono M. Chem. Lett. 1987; 501
    • 29b Szostak M, Spain M, Procter DJ. J. Org. Chem. 2012; 77: 3049