Subscribe to RSS
DOI: 10.1055/s-0035-1560398
Three-Step Synthesis of 3-Aminoseptanoside Derivatives by Using Lithiated Methoxyallene and δ-Siloxynitrones
Publication History
Received: 24 September 2015
Accepted after revision: 04 November 2015
Publication Date:
04 January 2016 (online)
Dedicated to Professor Grzegorz Mlostoń on the occasion of his 65th birthday
Abstract
A three-step approach to enantiomerically pure 3-aminoseptanoside derivatives by addition of lithiated methoxyallene to δ-silylated aldopentose-derived nitrones, followed by Brønsted acid mediated cyclization and chemoselective N–O bond scission is presented. For the addition of the methoxyallene anion leading to 3,6-dihydro-1,2-oxazines, excellent syn-diastereoselectivities were observed in the case of d-xylose- and l-arabinose-derived nitrones, whereas the d-ribose analogue provided syn- and anti-configured products in an approximately 2:1 ratio. Subsequent proton-induced reactions provided the corresponding dimethyl ketals as kinetic products, which slowly converted into bicyclic oxepanoides formed in a highly cis-selective manner. The final reductive ring opening was performed in good yields by using an excess of samarium(II) iodide. With a selected compound it was demonstrated that this type of product is a suitable precursor for the preparation of polyfunctionalized oxepanopyrrolidine derivatives.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560398.
- Supporting Information
-
References
- 1 Responsible for X-ray crystal-structure determination.
- 2a Hoberg JO. Tetrahedron 1998; 54: 12631
- 2b Belen’kii LI. Oxepanes and Oxepines . In Comprehensive Heterocyclic Chemistry III . Vol. 13. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008. Chap. 13.02, 45
- 2c Piva O. Synthesis of Seven-Membered Ring Ethers and Lactones. In Synthesis of Saturated Oxygenated Heterocycles II. Cossy J. Springer; Berlin: 2014: 283
- 3a Bozó E, Boros S, Párkányi L, Kuszmann J. Carbohydr. Res. 2000; 329: 269
- 3b Castro S, Duff M, Snyder NL, Morton M, Kumar CV, Peczuh MW. Org. Biomol. Chem. 2005; 3: 3869
- 3c Pakulski Z. Pol. J. Chem. 2006; 80: 1293
- 3d Sabatino D, Damha MJ. J. Am. Chem. Soc. 2007; 129: 8259
- 3e Duff MR. Jr, Fyvie WS, Markad SD, Frankel AE, Kumar CV, Gascón JA, Peczuh MW. Org. Biomol. Chem. 2011; 9: 154
- 3f Saha J, Peczuh MW. Adv. Carbohydr. Chem. Biochem. 2011; 66: 121
- 4a Contour MO, Fayet C, Gelas J. Carbohydr. Res. 1990; 201: 150
- 4b Ng CJ, Stevens JD. Carbohydr. Res. 1996; 284: 241
- 4c Castro S, Peczuh MW. J. Org. Chem. 2005; 70: 3312
- 4d Tauss A, Steiner AJ, Stütz AE, Tarling CA, Withers SG, Wrodnigg TM. Tetrahedron: Asymmetry 2006; 17: 234
- 4e Sizun G, Dukhan D, Griffon J.-F, Griffe L, Meillon J.-C, Leroy F, Storer R, Sommadossi J.-P, Gosselin G. Carbohydr. Res. 2009; 344: 448
- 4f Venukumar P, Sudharani C, Sridhar PR. Chem. Commun. 2014; 50: 2218
- 5a Ovaa H, Leeuvenburgh MA, Overkleeft HS, van der Marel GA, van Boom JA. Tetrahedron Lett. 1998; 39: 3025
- 5b Peczuh MW, Snyder NL. Tetrahedron Lett. 2003; 44: 4057
- 5c Schmidt B, Biernat A. Chem. Eur. J. 2008; 14: 6135
- 5d Schmidt B, Biernat A. Org. Lett. 2008; 10: 105
- 6a Hoberg JO, Bozell JJ. Tetrahedron Lett. 1995; 36: 6831
- 6b Cousins GS, Hoberg JO. Chem. Soc. Rev. 2000; 29: 165
- 6c Ganesh NV, Jayaraman N. J. Org. Chem. 2007; 72: 5500
- 6d Batchelor R, Harvey JE, Northcote PT, Teesdale-Spittle P, Hoberg JO. J. Org. Chem. 2009; 74: 7627
- 6e Ganesh NV, Jayaraman N. J. Org. Chem. 2009; 74: 739
- 6f Hewitt RJ, Harvey JE. J. Org. Chem. 2010; 75: 955
- 6g Ganesh NV, Raghothama S, Sonti R, Jayaraman N. J. Org. Chem. 2010; 75: 215
- 6h Dey S, Jayaraman N. Beilstein J. Org. Chem. 2012; 8: 522
- 6i Dey S, Jayaraman N. Carbohydr. Res. 2014; 399: 49
- 8a Alcázar E, Pletcher JM, McDonald FE. Org. Lett. 2004; 6: 3877
- 8b Boone MA, McDonald FE, Lichter J, Lutz S, Cao R, Hardcastle KI. Org. Lett. 2009; 11: 851
- 9 Köver A, Matheu MI, Díaz Y, Castillón S. ARKIVOC 2007; (iv): 364
- 10 Wang Z.-X, Miller SM, Anderson OP, Shi Y. J. Org. Chem. 1999; 64: 6443
- 11a Schmiedel VM, Stefani S, Reissig H.-U. Beilstein J. Org. Chem. 2013; 9: 2564
- 11b Bera MK, Domínguez M, Hommes P, Reissig H.-U. Beilstein J. Org. Chem. 2014; 10: 394
- 11c Jasiński M, Mlostoń G, Stolarski M, Costa W, Domínguez M, Reissig H.-U. Chem. Asian J. 2014; 9: 2641
-
11d Zimmer R, Reissig H.-U. Chem. Soc. Rev. 2014; 43: 2888
- 11e Zimmer R, Reissig H.-U. Allenes in Multicomponent Synthesis of Heterocycles. In Multicomponent Reactions in Organic Synthesis. Zhu J, Wang Q, Wang M.-X. Wiley-VCH; Weinheim: 2015: 301
- 12a Schade W, Reissig H.-U. Synlett 1999; 632
- 12b Pulz R, Cicchi S, Brandi A, Reissig H.-U. Eur. J. Org. Chem. 2003; 1153
- 12c Al-Harrasi A, Reissig H.-U. Synlett 2005; 1152
- 12d Helms M, Schade W, Pulz R, Watanabe T, Al-Harrasi A, Fišera L, Hlobilová I, Zahn G, Reissig H.-U. Eur. J. Org. Chem. 2005; 1003
- 12e Dekaris V, Reissig H.-U. Synlett 2010; 42
- 12f Jasiński M, Lentz D, Reissig H.-U. Beilstein J. Org. Chem. 2012; 8: 662
- 12g Parmeggiani C, Cardona F, Giusti L, Reissig H.-U, Goti A. Chem. Eur. J. 2013; 19: 10595
- 12h Jasiński M, Moreno-Clavijo E, Reissig H.-U. Eur. J. Org. Chem. 2014; 442
- 13a Al-Harrasi A, Reissig H.-U. Angew. Chem. Int. Ed. 2005; 44: 6227 ; Angew. Chem. 2005, 117, 6383
- 13b Al-Harrasi A, Pfrengle F, Prisyazhnyuk V, Yekta S, Koóš P, Reissig H.-U. Chem. Eur. J. 2009; 15: 11632
- 13c Pfrengle F, Reissig H.-U. Chem. Eur. J. 2010; 16: 11915
- 13d Bouché L, Kandziora M, Reissig H.-U. Beilstein J. Org. Chem. 2014; 10: 213
- 13e Salta J, Dernedde J, Reissig H.-U. Beilstein J. Org. Chem. 2015; 11: 638
- 13f Salta J, Reissig H.-U. Synthesis 2015; 47: 1893
- 13g Kandziora M, Reissig H.-U. Eur. J. Org. Chem. 2015; 370
- 13h Kandziora M, Mucha E, Zucker SP, Reissig H.-U. Synlett 2015; 26: 367
- 14a Bressel B, Egart B, Al-Harrasi A, Pulz R, Reissig H.-U, Brüdgam I. Eur. J. Org. Chem. 2008; 467
- 14b Dekaris V, Bressel B, Reissig H.-U. Synlett 2010; 47
- 14c Jasiński M, Lentz D, Moreno-Clavijo E, Reissig H.-U. Eur. J. Org. Chem. 2012; 3304
- 15a Chakraborty B, Sharma PK, Rai N, Sharma CD. J. Chem. Sci. 2012; 124: 679
- 15b Chakraborty B, Sharma CD. Tetrahedron Lett. 2013; 54: 5532
- 16 Dondoni A, Perrone D. Tetrahedron 2003; 59: 4261
- 17 Hoff S, Brandsma L, Arens JF. Recl. Trav. Chim. Pays-Bas 1968; 87: 916
- 18 Maciaszczyk J, Jasiński M. Tetrahedron: Asymmetry 2015; 26: 510
- 19a Chiara JL, Destabel C, Gallego P, Marco-Contelles J. J. Org. Chem. 1996; 61: 359
- 19b Jung SH, Lee JE, Koh HY. Bull. Korean Chem. Soc. 1998; 19: 33
- 19c Keck GE, Wager TT, McHardy SF. Tetrahedron 1999; 55: 11755
- 19d Pulz R, Al-Harrasi A, Reissig H.-U. Org. Lett. 2002; 4: 2353
- 19e Revuelta J, Cicchi S, Brandi A. Tetrahedron Lett. 2004; 45: 8375
- 19f Bressel B, Reissig H.-U. Org. Lett. 2009; 11: 527
- 19g Dekaris V, Pulz R, Al-Harrasi A, Lentz D, Reissig H.-U. Eur. J. Org. Chem. 2011; 3210
- 19h Jasiński M, Watanabe T, Reissig H.-U. Eur. J. Org. Chem. 2013; 605
- 20 Compound 23c is probably formed as a result of Sm(III) activation of the free hydroxyl group of 22c, followed by spontaneous SN2 ring closure, rather than via redox processes. For SmI2-mediated ring contraction in 3,6-dihydro-2H-1,2-oxazines, see ref. 19h.
- 21a Smith GV, Notheisz F. Hydrogenolysis of Benzyl–Nitrogen Bonds . In Heterogeneous Catalysis in Organic Chemistry . Academic Press; San Diego: 1999. Chap. 4.2.1.1, 161
- 21b Fu X, Cook JM. J. Am. Chem. Soc. 1992; 114: 6910
- 21c Fu X, Cook JM. J. Org. Chem. 1993; 58: 661
- 22a Stick RV, Williams SJ. Synthesis and Protecting Groups In Carbohydrates: The Essential Molecules of Life. Elsevier; Amsterdam: 2009. Chap. 2, 35
- 22b Iserloh U, Dudkin V, Wang Z.-G, Danishefsky SJ. Tetrahedron Lett. 2002; 43: 7027
- 22c Werz DB, Seeberger PH. Angew. Chem. Int. Ed. 2005; 44: 6315 ; Angew. Chem. 2005, 117, 6474
- 22d Cumpstey I, Ramstadius C, Akhtar T, Goldstein IJ, Winter HC. Eur. J. Org. Chem. 2010; 1951
- 22e Liu Z, Bittman R. Org. Lett. 2012; 14: 620
- 23a Fall Y, Gomez G, Fernandez C. Tetrahedron Lett. 1999; 40: 8307
- 23b Pérez M, Canoa P, Gomez G, Teijeira M, Fall Y. Synthesis 2005; 411
- 24 Gottlieb HE, Kotlyar V, Nudelman A. J. Org. Chem. 1997; 62: 7512
- 25 Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112
- 26 Sheldrick GM. Acta Crystallogr., Sect. C 2015; 71: 3
- 27 Nishiyama K, Kamiya A, Hammam MA. S, Kinoshita H, Fujinami S, Ukaji Y, Inomata K. Bull. Chem. Soc. Jpn. 2010; 83: 1309
- 28 The 1H NMR spectrum of cis-21c taken at room temperature showed a series of very broad signals, which could be resolved at 403 K (DMSO-d 6); however, partial decomposition of the material was observed at this temperature. In the case of longer-time experiments (e.g., 13C NMR, HMQC), the appearance of a new set of signals made correct assignments difficult.
For selected recent examples, see:
For reviews, see:
For reports on the dehydrogenation of alcohols, see:
For selected examples of Birch-type debenzylations, see: