Subscribe to RSS
DOI: 10.1055/s-0035-1560442
Transition-Metal-Catalyzed C–C and C–X Bond-Forming Reactions Using Cyclopropanols
Publication History
Received: 19 February 2016
Accepted after revision: 29 March 2016
Publication Date:
18 May 2016 (online)
Abstract
Due to their high strain, unique bonding and relative ease of ring-cleavage, and because they are readily accessible, cyclopropanols have been employed in an increasing number of transition-metal-catalyzed C–C and C–X (X = heteroatom) bond-forming reactions. We review the recent literature and organize all the methods developed along mechanistic lines.
1 Introduction and Scope
2 C–C Bond Formation via Catalytic Generation and Coupling of Cyclopropanol-Derived Homoenolates
3 C–N Bond Formation via Catalytic Generation and Coupling of Cyclopropanol-Derived Homoenolates
4 C–C Bond Formation via Stoichiometric Generation and Coupling of Cyclopropanol-Derived Homoenolates
5 Ring Expansion of Cyclopropanols to Cyclobutanones via Transition-Metal-Catalyzed Wagner–Meerwein Shift
6 Transition-Metal-Catalyzed Rearrangement of Cyclopropanols to Cyclopentenones and Cyclohexenones
7 Synthesis of Medium-Size Rings via Multicomponent Reactions Involving Cyclopropanols
8 C–C and C–X Bond Formation via Free-Radical Fragmentation of Cyclopropanols
9 Summary and Outlook
-
References
- 1 Kulinkovich OG. Chem. Rev. 2003; 103: 2597
- 2a Kuwajima I. Pure Appl. Chem. 1988; 60: 115
- 2b Kuwajima I, Nakamura I. Top. Curr. Chem. 1990; 155: 1
- 2c Kuwajima I, Nakamura E. Comprehensive Organic Synthesis . Vol. 2. Trost B, Fleming I. Pergamon; Oxford: 1991: 441
- 2d For the generation of homoenolates from cyclopropane acetals and a range of main-group metals see: Nakamura E, Shimada J, Kuwajima I. Organometallics 1985; 4: 641
- 3a Aoki S, Fujimura T, Nakamura E, Kuwajima I. J. Am. Chem. Soc. 1988; 110: 3296
- 3b Aoki S, Fujimura T, Nakamura E, Kuwajima I. Tetrahedron Lett. 1989; 30: 6541
- 4 Park S.-B, Cha JK. Org. Lett. 2000; 2: 147
- 5 Rosa D, Orellana A. Org. Lett. 2011; 13: 110
- 6 Rosa D, Orellana A. Chem. Commun. 2013; 49: 5420
- 7 Cheng K, Walsh PJ. Org. Lett. 2013; 15: 2298
- 8 Nithiy N, Orellana A. Org. Lett. 2014; 16: 5854
- 9 Ydhyam S, Cha JK. Org. Lett. 2015; 17: 5820
- 10 Nikolaev A, Nithiy N, Orellana A. Synlett 2014; 25: 2301
- 11 Rosa D, Orellana A. Chem. Commun. 2012; 48: 1922
- 12a Penkett CS, Sims RO, French R, Dray L, Roome SJ, Hitchcock PB. Chem. Commun. 2004; 1932
- 12b Penkett CS, Sims RO, Byrne PW, Kingston L, French R, Dray L, Berritt S, Lai J, Avent AG, Hitchcock PB. Tetrahedron 2006; 62: 3423
- 12c Penkett CS, Sims RO, Byrne PW, Pennicott LE, Rushton SP, Avent AG, Hitchcock PB. Tetrahedron 2006; 62: 9403
- 13 Zhou X, Yu S, Kong L, Li X. ACS Catal. 2016; 6: 647
- 14 Ye Z, Dai M. Org. Lett. 2015; 17: 2190
- 15 Shen M.-H, Lu X.-L, Xu H.-D. RSC Adv. 2015; 5: 98757
- 16 Li Y, Ye Z, Bellman TM, Chi T, Dai M. Org. Lett. 2015; 17: 2186
- 17 Nomura K, Matsubara S. Chem. Asian J. 2010; 5: 147
- 18 Cheng K, Carroll PJ, Walsh PJ. Org. Lett. 2011; 13: 2346
- 19 Das PP, Belmore K, Cha JK. Angew. Chem. Int. Ed. 2012; 51: 9517
- 20 Rao NN, Cha JK. Tetrahedron Lett. 2015; 56: 3298
- 21 Murali RV. N. S, Rao NN, Cha JK. Org. Lett. 2015; 17: 3854
- 22 Parida BB, Das PP, Niocel M, Cha JK. Org. Lett. 2013; 15: 1780
- 23 Rao NN, Parida BB, Cha JK. Org. Lett. 2014; 16: 6208
- 24 Rao NN, Cha JK. J. Am. Chem. Soc. 2015; 137: 2243
- 25 Trost BM, Yasukata T. J. Am. Chem. Soc. 2001; 123: 7162
- 26 Zhu L.-L, Li X.-X, Zhou W, Li X, Chen Z. J. Org. Chem. 2011; 76: 8814
- 27 Markham JP, Staben ST, Toste FD. J. Am. Chem. Soc. 2005; 127: 9708
- 28 Murakami M, Inoue M, Suginome M, Ito Y. Bull. Chem. Soc. Jpn. 1988; 61: 3649
- 29 Hashmi AS. K, Wang T, Shi S, Rudolph M. J. Org. Chem. 2012; 77: 7761
- 30 Sethofer SG, Staben ST, Hung OY, Toste FD. Org. Lett. 2008; 10: 4315
- 31 This mechanism is supported by theoretical studies: Sordo TL, Ardura D. Eur. J. Org. Chem. 2008; 3004
- 32 Kleinbeck F, Toste FD. J. Am. Chem. Soc. 2009; 131: 9178
- 33 Shu Z.-Z, Zhang M, He Y, Frei H, Toste FD. J. Am. Chem. Soc. 2014; 136: 5844
- 34 Trost BM, Maulide N. J. Am. Chem. Soc. 2008; 130: 17258
- 35a Grant TN, West FG. J. Am. Chem. Soc. 2006; 128: 9348
- 35b Grant TN, West FG. Org. Lett. 2007; 9: 3789
- 36 Zhang H, Li C, Xie G, Wang B, Zhang Y, Wang J. J. Org. Chem. 2014; 79: 6286
- 37 Wender PA, Takahashi H, Witulski B. J. Am. Chem. Soc. 1995; 117: 4720
- 38a Wender PA, Gamber GG, Scanio MJ. C. Angew. Chem. Int. Ed. 2001; 40: 3895
- 38b Wender PA, Gamber GG, Hubbard RD, Zhang L. J. Am. Chem. Soc. 2002; 124: 2876
- 38c Wender PA, Gamber GG, Hubbard RD, Pham SM, Zhang L. J. Am. Chem. Soc. 2005; 127: 2836
- 38d Wenger HA, de Meijere A, Wender PA. J. Am. Chem. Soc. 2005; 127: 6530
- 38e Wender PA, Stemmler RT, Sirois LE. J. Am. Chem. Soc. 2010; 132: 2532
- 38f Wender PA, Fournogerakis DN, Jeffreys MS, Quiroz RV, Inagaki F, Pfaffenbach M. Nature Chem. 2014; 6: 448
- 38g Wender PA, Inagaki F, Pfaffenbach M, Stevens MC. Org. Lett. 2014; 16: 2923
- 39a Yu Z.-X, Wender PA, Houk KN. J. Am. Chem. Soc. 2004; 126: 9154
- 39b Yu Z.-X, Cheong PH.-Y, Liu P, Legault CY, Wender PA, Houk KN. J. Am. Chem. Soc. 2008; 130: 2378
- 39c Liu P, Sirois LE, Cheong PH.-Y, Yu Z.-X, Hartung IV, Rieck H, Wender PA, Houk KN. J. Am. Chem. Soc. 2010; 132: 10127
- 39d Hong X, Stevens MC, Liu P, Wender PA, Houk KN. J. Am. Chem. Soc. 2014; 136: 17273
- 40a Wender PA, Sirois LE, Stemmler RT, Williams TJ. Org. Lett. 2010; 12: 1604
- 40b Wender PA, Lesser AB, Sirois LE. Angew. Chem. Int. Ed. 2012; 51: 2736
- 41 Wender PA, Dyckman AJ, Husfeld CO, Scanio MJ. C. Org. Lett. 2000; 2: 1609
- 42 Jiao L, Yan C, Yu Z.-X. J. Am. Chem. Soc. 2008; 130: 4421
- 43 Yuan C, Jiao L, Yu Z.-X. Tetrahedron Lett. 2010; 51: 5674
- 44 Melcher M.-C, von Wachenfeldt H, Sundin A, Strand D. Chem. Eur. J. 2015; 21: 531
- 45 Trost BM, Shen HC, Horne DB, Toste FD, Steinmetz BG, Koradin C. Chem. Eur. J. 2005; 11: 2577
- 46 Martinez AM, Cushmac GE, Rocek J. J. Am. Chem. Soc. 1975; 97: 6502
- 47 Hasegawa E, Nemoto K, Nagamuno R, Tayama E, Iwamoto H. J. Org. Chem. 2016; 81: 2692
- 48a Iwasawa N, Hayakawa S, Isobe K, Narasaka K. Chem. Lett. 1991; 1193
- 48b Iwasawa N, Hayakawa S, Funahashi M, Isobe K, Narasaka K. Bull. Chem. Soc. Jpn. 1993; 66: 819
- 48c Iwasawa N, Funahashi M, Hatakawa K, Narasaka K. Chem. Lett. 1993; 545
- 48d Narasaka K. Pure Appl. Chem. 1997; 69: 601
- 49 Iwasawa N, Funahashi M, Hatakawa K, Ikeno T, Narasaka K. Bull. Chem. Soc. Jpn. 1999; 72: 85
- 50 Kitamura M, Chiba S, Narasaka K. Chem. Lett. 2004; 33: 942
- 51 Chiba S, Cao Z, El Bialy SA. A, Narasaka K. Chem. Lett. 2006; 35: 18
- 52 Chiba S, Kitamura M, Narasaka K. J. Am. Chem. Soc. 2006; 128: 6931
- 53 Ilangovan A, Saravanakumar S, Malayappaasamy S. Org. Lett. 2013; 15: 4968
- 54 Wang C.-Y, Song R.-J, Xie Y.-X, Li J.-H. Synthesis 2016; 48: 223
- 55a Wang Y.-F, Toh KK, Ng EP. J, Chiba S. J. Am. Chem. Soc. 2011; 133: 6411
- 55b Wang Y.-F, Chiba S. J. Am. Chem. Soc. 2009; 131: 12570
- 56 Bume DD, Pitts CR, Lectka T. Eur. J. Org. Chem. 2016; 26
- 57 Tsuchida H, Tamura M, Hasegawa E. J. Org. Chem. 2009; 74: 2467
- 58 Booker-Milburn KI, Jones JL, Sibley GE. M, Cox R, Meadows J. Org. Lett. 2003; 5: 1107
- 59 Booker-Milburn KI, Jenkins H, Charmant JP. H, Mohr P. Org. Lett. 2003; 5: 3309
- 60 Booker-Milburn KI, Cox B, Grady M, Halley F, Marrison S. Tetrahedron Lett. 2000; 41: 4651
- 61a Highton A, Volpicelli R, Simpkins NS. Tetrahedron Lett. 2004; 45: 6679
- 61b Blake AJ, Highton AJ, Majid TN, Simpkins NS. Org. Lett. 1999; 1: 1787
- 62 He X.-P, Shu Y.-J, Dai J.-J, Zhang W.-M, Feng Y.-S, Xu H.-J. Org. Biomol. Chem. 2015; 13: 7159
- 63 Kananovich DG, Konik YA, Zubrytski DM, Järving I, Lopp M. Chem. Commun. 2015; 51: 8349
- 64 Ye Z, Gettys KE, Shen X, Dai M. Org. Lett. 2015; 17: 6074
- 65 Kulinkovich OG, Astashko DA, Tyvorskii VI, Ilyna NA. Synthesis 2001; 1453
- 66 Astashko DA, Tyvosrskii VI. Tetrahedron. Lett. 2011; 52: 4792
- 67a Kirihara M, Kakuda H, Ichinose M, Ochiai Y, Takizawa S, Mokuya A, Okubo K, Hatano A, Shiro M. Tetrahedron 2005; 61: 4831
- 67b Kirihara M, Ichinose M, Takizawa S, Momose T. Chem. Commun. 1998; 1691
- 68 Tyagi S, Cook CD, DiDonato DA, Key JA, McKillican BP, Eberle WJ, Carlin TJ, Hunt DA, Marshall SJ, Bow NL. J. Org. Chem. 2015; 80: 11941
- 69 Zhao H, Fan X, Yu J, Zhu C. J. Am. Chem. Soc. 2015; 137: 3490
- 70 Ishida N, Okumura S, Nakanishi Y, Murakami M. Chem. Lett. 2015; 44: 821
- 71 Ren S, Feng C, Loh T.-P. Org. Biomol. Chem. 2015; 13: 5105
- 72 Huang F.-Q, Xie J, Sun JG, Wang Y.-W, Dong X, Qi L.-W, Zhang B. Org. Lett. 2016; 18: 684
- 73 Jia K, Zhang F, Huang H, Chen Y. J. Am. Chem. Soc. 2016; 138: 1514
For reviews see: