Synthesis 2016; 48(12): 1741-1768
DOI: 10.1055/s-0035-1560442
review
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Catalyzed C–C and C–X Bond-Forming Reactions Using Cyclopropanols

Andrei Nikolaev
Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada   eMail: aorellan@yorku.ca
,
Arturo Orellana*
Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada   eMail: aorellan@yorku.ca
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 19. Februar 2016

Accepted after revision: 29. März 2016

Publikationsdatum:
18. Mai 2016 (online)


Abstract

Due to their high strain, unique bonding and relative ease of ring-cleavage, and because they are readily accessible, cyclopropanols have been employed in an increasing number of transition-metal-catalyzed C–C and C–X (X = heteroatom) bond-forming reactions. We review the recent literature and organize all the methods developed along mechanistic lines.

1 Introduction and Scope

2 C–C Bond Formation via Catalytic Generation and Coupling of Cyclopropanol-Derived Homoenolates

3 C–N Bond Formation via Catalytic Generation and Coupling of Cyclopropanol-Derived Homoenolates

4 C–C Bond Formation via Stoichiometric Generation and Coupling of Cyclopropanol-Derived Homoenolates

5 Ring Expansion of Cyclopropanols to Cyclobutanones via Transition-Metal-Catalyzed Wagner–Meerwein Shift

6 Transition-Metal-Catalyzed Rearrangement of Cyclopropanols to Cyclopentenones and Cyclohexenones

7 Synthesis of Medium-Size Rings via Multicomponent Reactions Involving Cyclopropanols

8 C–C and C–X Bond Formation via Free-Radical Fragmentation of Cyclopropanols

9 Summary and Outlook

 
  • References

  • 1 Kulinkovich OG. Chem. Rev. 2003; 103: 2597

    • For reviews see:
    • 2a Kuwajima I. Pure Appl. Chem. 1988; 60: 115
    • 2b Kuwajima I, Nakamura I. Top. Curr. Chem. 1990; 155: 1
    • 2c Kuwajima I, Nakamura E. Comprehensive Organic Synthesis . Vol. 2. Trost B, Fleming I. Pergamon; Oxford: 1991: 441
    • 2d For the generation of homoenolates from cyclopropane acetals and a range of main-group metals see: Nakamura E, Shimada J, Kuwajima I. Organometallics 1985; 4: 641
    • 3a Aoki S, Fujimura T, Nakamura E, Kuwajima I. J. Am. Chem. Soc. 1988; 110: 3296
    • 3b Aoki S, Fujimura T, Nakamura E, Kuwajima I. Tetrahedron Lett. 1989; 30: 6541
  • 4 Park S.-B, Cha JK. Org. Lett. 2000; 2: 147
  • 5 Rosa D, Orellana A. Org. Lett. 2011; 13: 110
  • 6 Rosa D, Orellana A. Chem. Commun. 2013; 49: 5420
  • 7 Cheng K, Walsh PJ. Org. Lett. 2013; 15: 2298
  • 8 Nithiy N, Orellana A. Org. Lett. 2014; 16: 5854
  • 9 Ydhyam S, Cha JK. Org. Lett. 2015; 17: 5820
  • 10 Nikolaev A, Nithiy N, Orellana A. Synlett 2014; 25: 2301
  • 11 Rosa D, Orellana A. Chem. Commun. 2012; 48: 1922
    • 12a Penkett CS, Sims RO, French R, Dray L, Roome SJ, Hitchcock PB. Chem. Commun. 2004; 1932
    • 12b Penkett CS, Sims RO, Byrne PW, Kingston L, French R, Dray L, Berritt S, Lai J, Avent AG, Hitchcock PB. Tetrahedron 2006; 62: 3423
    • 12c Penkett CS, Sims RO, Byrne PW, Pennicott LE, Rushton SP, Avent AG, Hitchcock PB. Tetrahedron 2006; 62: 9403
  • 13 Zhou X, Yu S, Kong L, Li X. ACS Catal. 2016; 6: 647
  • 14 Ye Z, Dai M. Org. Lett. 2015; 17: 2190
  • 15 Shen M.-H, Lu X.-L, Xu H.-D. RSC Adv. 2015; 5: 98757
  • 16 Li Y, Ye Z, Bellman TM, Chi T, Dai M. Org. Lett. 2015; 17: 2186
  • 17 Nomura K, Matsubara S. Chem. Asian J. 2010; 5: 147
  • 18 Cheng K, Carroll PJ, Walsh PJ. Org. Lett. 2011; 13: 2346
  • 19 Das PP, Belmore K, Cha JK. Angew. Chem. Int. Ed. 2012; 51: 9517
  • 20 Rao NN, Cha JK. Tetrahedron Lett. 2015; 56: 3298
  • 21 Murali RV. N. S, Rao NN, Cha JK. Org. Lett. 2015; 17: 3854
  • 22 Parida BB, Das PP, Niocel M, Cha JK. Org. Lett. 2013; 15: 1780
  • 23 Rao NN, Parida BB, Cha JK. Org. Lett. 2014; 16: 6208
  • 24 Rao NN, Cha JK. J. Am. Chem. Soc. 2015; 137: 2243
  • 25 Trost BM, Yasukata T. J. Am. Chem. Soc. 2001; 123: 7162
  • 26 Zhu L.-L, Li X.-X, Zhou W, Li X, Chen Z. J. Org. Chem. 2011; 76: 8814
  • 27 Markham JP, Staben ST, Toste FD. J. Am. Chem. Soc. 2005; 127: 9708
  • 28 Murakami M, Inoue M, Suginome M, Ito Y. Bull. Chem. Soc. Jpn. 1988; 61: 3649
  • 29 Hashmi AS. K, Wang T, Shi S, Rudolph M. J. Org. Chem. 2012; 77: 7761
  • 30 Sethofer SG, Staben ST, Hung OY, Toste FD. Org. Lett. 2008; 10: 4315
  • 31 This mechanism is supported by theoretical studies: Sordo TL, Ardura D. Eur. J. Org. Chem. 2008; 3004
  • 32 Kleinbeck F, Toste FD. J. Am. Chem. Soc. 2009; 131: 9178
  • 33 Shu Z.-Z, Zhang M, He Y, Frei H, Toste FD. J. Am. Chem. Soc. 2014; 136: 5844
  • 34 Trost BM, Maulide N. J. Am. Chem. Soc. 2008; 130: 17258
    • 35a Grant TN, West FG. J. Am. Chem. Soc. 2006; 128: 9348
    • 35b Grant TN, West FG. Org. Lett. 2007; 9: 3789
  • 36 Zhang H, Li C, Xie G, Wang B, Zhang Y, Wang J. J. Org. Chem. 2014; 79: 6286
  • 37 Wender PA, Takahashi H, Witulski B. J. Am. Chem. Soc. 1995; 117: 4720
    • 38a Wender PA, Gamber GG, Scanio MJ. C. Angew. Chem. Int. Ed. 2001; 40: 3895
    • 38b Wender PA, Gamber GG, Hubbard RD, Zhang L. J. Am. Chem. Soc. 2002; 124: 2876
    • 38c Wender PA, Gamber GG, Hubbard RD, Pham SM, Zhang L. J. Am. Chem. Soc. 2005; 127: 2836
    • 38d Wenger HA, de Meijere A, Wender PA. J. Am. Chem. Soc. 2005; 127: 6530
    • 38e Wender PA, Stemmler RT, Sirois LE. J. Am. Chem. Soc. 2010; 132: 2532
    • 38f Wender PA, Fournogerakis DN, Jeffreys MS, Quiroz RV, Inagaki F, Pfaffenbach M. Nature Chem. 2014; 6: 448
    • 38g Wender PA, Inagaki F, Pfaffenbach M, Stevens MC. Org. Lett. 2014; 16: 2923
    • 39a Yu Z.-X, Wender PA, Houk KN. J. Am. Chem. Soc. 2004; 126: 9154
    • 39b Yu Z.-X, Cheong PH.-Y, Liu P, Legault CY, Wender PA, Houk KN. J. Am. Chem. Soc. 2008; 130: 2378
    • 39c Liu P, Sirois LE, Cheong PH.-Y, Yu Z.-X, Hartung IV, Rieck H, Wender PA, Houk KN. J. Am. Chem. Soc. 2010; 132: 10127
    • 39d Hong X, Stevens MC, Liu P, Wender PA, Houk KN. J. Am. Chem. Soc. 2014; 136: 17273
    • 40a Wender PA, Sirois LE, Stemmler RT, Williams TJ. Org. Lett. 2010; 12: 1604
    • 40b Wender PA, Lesser AB, Sirois LE. Angew. Chem. Int. Ed. 2012; 51: 2736
  • 41 Wender PA, Dyckman AJ, Husfeld CO, Scanio MJ. C. Org. Lett. 2000; 2: 1609
  • 42 Jiao L, Yan C, Yu Z.-X. J. Am. Chem. Soc. 2008; 130: 4421
  • 43 Yuan C, Jiao L, Yu Z.-X. Tetrahedron Lett. 2010; 51: 5674
  • 44 Melcher M.-C, von Wachenfeldt H, Sundin A, Strand D. Chem. Eur. J. 2015; 21: 531
  • 45 Trost BM, Shen HC, Horne DB, Toste FD, Steinmetz BG, Koradin C. Chem. Eur. J. 2005; 11: 2577
  • 46 Martinez AM, Cushmac GE, Rocek J. J. Am. Chem. Soc. 1975; 97: 6502
  • 47 Hasegawa E, Nemoto K, Nagamuno R, Tayama E, Iwamoto H. J. Org. Chem. 2016; 81: 2692
    • 48a Iwasawa N, Hayakawa S, Isobe K, Narasaka K. Chem. Lett. 1991; 1193
    • 48b Iwasawa N, Hayakawa S, Funahashi M, Isobe K, Narasaka K. Bull. Chem. Soc. Jpn. 1993; 66: 819
    • 48c Iwasawa N, Funahashi M, Hatakawa K, Narasaka K. Chem. Lett. 1993; 545
    • 48d Narasaka K. Pure Appl. Chem. 1997; 69: 601
  • 49 Iwasawa N, Funahashi M, Hatakawa K, Ikeno T, Narasaka K. Bull. Chem. Soc. Jpn. 1999; 72: 85
  • 50 Kitamura M, Chiba S, Narasaka K. Chem. Lett. 2004; 33: 942
  • 51 Chiba S, Cao Z, El Bialy SA. A, Narasaka K. Chem. Lett. 2006; 35: 18
  • 52 Chiba S, Kitamura M, Narasaka K. J. Am. Chem. Soc. 2006; 128: 6931
  • 53 Ilangovan A, Saravanakumar S, Malayappaasamy S. Org. Lett. 2013; 15: 4968
  • 54 Wang C.-Y, Song R.-J, Xie Y.-X, Li J.-H. Synthesis 2016; 48: 223
    • 55a Wang Y.-F, Toh KK, Ng EP. J, Chiba S. J. Am. Chem. Soc. 2011; 133: 6411
    • 55b Wang Y.-F, Chiba S. J. Am. Chem. Soc. 2009; 131: 12570
  • 56 Bume DD, Pitts CR, Lectka T. Eur. J. Org. Chem. 2016; 26
  • 57 Tsuchida H, Tamura M, Hasegawa E. J. Org. Chem. 2009; 74: 2467
  • 58 Booker-Milburn KI, Jones JL, Sibley GE. M, Cox R, Meadows J. Org. Lett. 2003; 5: 1107
  • 59 Booker-Milburn KI, Jenkins H, Charmant JP. H, Mohr P. Org. Lett. 2003; 5: 3309
  • 60 Booker-Milburn KI, Cox B, Grady M, Halley F, Marrison S. Tetrahedron Lett. 2000; 41: 4651
    • 61a Highton A, Volpicelli R, Simpkins NS. Tetrahedron Lett. 2004; 45: 6679
    • 61b Blake AJ, Highton AJ, Majid TN, Simpkins NS. Org. Lett. 1999; 1: 1787
  • 62 He X.-P, Shu Y.-J, Dai J.-J, Zhang W.-M, Feng Y.-S, Xu H.-J. Org. Biomol. Chem. 2015; 13: 7159
  • 63 Kananovich DG, Konik YA, Zubrytski DM, Järving I, Lopp M. Chem. Commun. 2015; 51: 8349
  • 64 Ye Z, Gettys KE, Shen X, Dai M. Org. Lett. 2015; 17: 6074
  • 65 Kulinkovich OG, Astashko DA, Tyvorskii VI, Ilyna NA. Synthesis 2001; 1453
  • 66 Astashko DA, Tyvosrskii VI. Tetrahedron. Lett. 2011; 52: 4792
    • 67a Kirihara M, Kakuda H, Ichinose M, Ochiai Y, Takizawa S, Mokuya A, Okubo K, Hatano A, Shiro M. Tetrahedron 2005; 61: 4831
    • 67b Kirihara M, Ichinose M, Takizawa S, Momose T. Chem. Commun. 1998; 1691
  • 68 Tyagi S, Cook CD, DiDonato DA, Key JA, McKillican BP, Eberle WJ, Carlin TJ, Hunt DA, Marshall SJ, Bow NL. J. Org. Chem. 2015; 80: 11941
  • 69 Zhao H, Fan X, Yu J, Zhu C. J. Am. Chem. Soc. 2015; 137: 3490
  • 70 Ishida N, Okumura S, Nakanishi Y, Murakami M. Chem. Lett. 2015; 44: 821
  • 71 Ren S, Feng C, Loh T.-P. Org. Biomol. Chem. 2015; 13: 5105
  • 72 Huang F.-Q, Xie J, Sun JG, Wang Y.-W, Dong X, Qi L.-W, Zhang B. Org. Lett. 2016; 18: 684
  • 73 Jia K, Zhang F, Huang H, Chen Y. J. Am. Chem. Soc. 2016; 138: 1514