Subscribe to RSS
DOI: 10.1055/s-0035-1560552
Transition Metal Catalyzed Asymmetric Aryl Carbon–Heteroatom Bond Coupling Reactions
Publication History
Received: 08 October 2015
Accepted after revision: 28 October 2015
Publication Date:
27 January 2016 (online)
Abstract
Transition metal catalyzed coupling reactions of aryl halides with nucleophiles are valuable methods for the formation of aryl carbon–carbon or aryl carbon–heteroatom bonds. However, little attention has been focused on the asymmetric versions of such couplings. Besides direct coupling for the formation of axial chirality, asymmetric desymmetrization and kinetic resolution are two important strategies for achieving enantioselectivity in transition metal catalyzed aryl carbon–heteroatom couplings. This account summarizes recent progress made in our group on copper- or palladium-catalyzed asymmetric aryl carbon–nitrogen/oxygen coupling reactions using asymmetric desymmetrization or kinetic resolution strategies.
1 Introduction
2 Copper-Catalyzed Asymmetric N-Arylation
2.1 N-Arylation via Asymmetric Desymmetrization
2.1.1 First Type of Desymmetric N-Arylation
2.1.2 Second Type of Desymmetric N-Arylation
2.1.3 Double N-Arylation for Spirobilactams
2.2 N-Arylation via Kinetic Resolution
3 Asymmetric O-Arylation
3.1 Palladium/Spirocyclic Diphosphine Ligand System for O-Arylation via Asymmetric Desymmetrization
3.2 Palladium/Spirocyclic Diphosphine Monoxide Ligand System for O-Arylation via Asymmetric Desymmetrization
3.3 Copper/Diamine System for O-Arylation via Asymmetric Desymmetrization
4 Summary and Outlook
-
References
- 1 Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 2a Metal-Catalyzed Cross-Coupling Reactions . de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004. 2nd ed.
- 2b Applied Cross-Coupling Reactions . Nishihara Y. Springer; Berlin: 2013
- 3a Kitagawa O, Takahashi M, Yoshikawa M, Taguchi T. J. Am. Chem. Soc. 2005; 127: 3676
- 3b Kitagawa O, Yoshikawa M, Tanabe H, Morita T, Takahashi M, Dobashi Y, Taguchi T. J. Am. Chem. Soc. 2006; 128: 12923
- 3c Kitagawa O, Kurihara D, Tanabe H, Shibuya T, Taguchi T. Tetrahedron Lett. 2008; 49: 471
- 3d Takahashi M, Tanabe H, Nakamura T, Kuribara D, Yamazaki T, Kitagawa O. Tetrahedron 2010; 66: 288
- 3e Takahashi I, Morita F, Kusagaya S, Fukaya H, Kitagawa O. Tetrahedron: Asymmetry 2012; 23: 1657
- 3f Ishibashi K, Tsue H, Takahashi H, Tamura R. Tetrahedron: Asymmetry 2009; 20: 375
- 4 Salih MQ, Beaudry CM. Org. Lett. 2013; 15: 4540
- 5a Studer A, Schleth F. Synlett 2005; 3033
- 5b Rovis T In New Frontiers in Asymmetric Catalysis . Mikami K, Lautens M. John Wiley and Sons; Hoboken, NJ: 2007: 275-309
- 5c Atodiresei I, Schiffers I, Bolm C. Chem. Rev. 2007; 107: 5683
- 5d Díaz-de-Villegas MD, Gálvaz JA, Etayo P, Badorrey R, López-Ram-de-Víu MP. Chem. Eur. J. 2012; 18: 13920
- 6a Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
- 6b Huerta FF, Minidis AB. E, Bäckwall J.-E. Chem. Soc. Rev. 2001; 30: 321
- 6c Noyori R, Tokunaga M, Kitamura M. Bull. Chem. Soc. Jpn. 1995; 68: 36
- 7a Takenaka K, Itoh N, Sasai H. Org. Lett. 2009; 11: 1483
- 7b Porosa L, Viirre RD. Tetrahedron Lett. 2009; 50: 4170
- 7c Snell RH, Durbin MJ, Woodward RL, Willis MC. Chem. Eur. J. 2012; 18: 16754
- 8a Rossen K, Pye PJ, Maliakal A, Volante RP. J. Org. Chem. 1997; 62: 6462
- 8b Tagashira J, Imao D, Yamamoto T, Ohta T, Furukawa I, Ito Y. Tetrahedron: Asymmetry 2005; 16: 2307
- 8c Kreis M, Friedmann CJ, Bräse S. Chem. Eur. J. 2005; 11: 7387
- 9a Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
- 9b Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
- 9c Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
- 9d Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
- 9e Ma D, Cai Q. Acc. Chem. Res. 2008; 41: 1450
- 9f Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
- 10 Xie X, Chen Y, Ma D. J. Am. Chem. Soc. 2006; 128: 16050
- 11a Stavrakov G, Keller M, Breit B. Eur. J. Org. Chem. 2007; 5726
- 11b Gorobets E, McDonald R, Keay BA. Org. Lett. 2006; 8: 1483
- 11c Meyers AI, Nelson TD, Moorlag H, Rawon DJ, Meier A. Tetrahedron 2004; 60: 4459
- 11d Spring DR, Krishnan S, Schreiber SL. J. Am. Chem. Soc. 2000; 122: 5656
- 11e Lipshutz BH, Kayser F, Liu Z.-P. Angew. Chem. Int. Ed. Engl. 1994; 33: 1842
- 11f Nelson TD, Meyers AI. J. Org. Chem. 1994; 59: 2655
- 11g Rawal VH, Florjancic AS, Singh SP. Tetrahedron Lett. 1994; 35: 8985
- 12 Cai Q, Zhou F. Synlett 2013; 24: 408
- 13 Zhou F, Guo J, Liu J, Ding K, Yu S, Cai Q. J. Am. Chem. Soc. 2012; 134: 14326
- 14 Liu J, Yan J, Qin D, Cai Q. Synthesis 2014; 46: 1917
- 15 For a review, see: Bartók M. Chem. Rev. 2010; 110: 1663
- 16 Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis. Christoffers J, Baro A. Wiley-VCH; Weinheim: 2005
- 17 Zhou F, Cheng G.-J, Yang W, Long Y, Zhang S, Wu Y.-D, Zhang X, Cai Q. Angew. Chem. Int. Ed. 2014; 53: 9555
- 18a Strieter ER, Bhayana B, Buchwald SL. J. Am. Chem. Soc. 2008; 131: 78
- 18b Shafir A, Lichtor PA, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 3490
- 18c Jones GO, Liu P, Houk KN, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 6205
- 18d Yu H.-Z, Jiang Y.-Y, Fu Y, Liu L. J. Am. Chem. Soc. 2010; 132: 18078
- 19a Tye JW, Weng Z, Johns AM, Incarvito CD, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 9971
- 19b Kaddouri H, Vicente V, Ouali A, Ouazzani F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 333
- 19c Tye JW, Weng Z, Giri R, Hartwig JF. Angew. Chem. Int. Ed. 2010; 49: 2185
- 19d Zhang S.-L, Liu L, Fu Y, Guo Q.-X. Organometallics 2007; 26: 4546
- 19e Zhang S, Ding Y. Organometallics 2011; 30: 633
- 20 He N, Huo Y, Liu J, Huang Y, Zhang S, Cai Q. Org. Lett. 2015; 17: 374
- 21 For a recent review on spirocyclic nitrogen heterocycles, see: Carreira EM, Fessard TC. Chem. Rev. 2014; 114: 8257
- 22a Weissbuch I, Lahav M. Chem. Rev. 2011; 111: 3236
- 22b Blackmond DG, Klussmann M. Chem. Commun. (Cambridge) 2007; 3990
- 22c Curran DP. Angew. Chem. Int. Ed. 1998; 37: 1174
- 23a Calvin M. Chemical Evolution: Molecular Evolution towards the Origin of Living Systems on the Earth and Elsewhere. Oxford University Press; Oxford: 1969
- 23b Cintas P. Angew. Chem. Int. Ed. 2008; 47: 2918
- 23c Hein JE, Blackmond DG. Acc. Chem. Res. 2012; 45: 2045
- 23d Blackmond DG. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5732
- 24 Liu J, Tian Y, Shi J, Zhang S, Cai Q. Angew. Chem. Int. Ed. 2015; 54: 10917
- 25a Lee JH, Han K, Kim M.-J, Park J. Eur. J. Org. Chem. 2010; 99
- 25b Gotor-Fernandez V, Gotor V. Curr. Opin. Drug Discovery Dev. 2009; 12: 784
- 25c Höhne M, Bornscheuer UT. ChemCatChem 2009; 1: 42
- 26a Paetzold J, Bäckvall JE. J. Am. Chem. Soc. 2005; 127: 17620
- 26b Kim M.-J, Kim W.-H, Han K, Choi YK, Park J. Org. Lett. 2007; 9: 1157
- 26c De C K, Klauber EG, Seidal D. J. Am. Chem. Soc. 2009; 131: 17060
- 26d Klauber EG, De CK, Shah TK, Seidal D. J. Am. Chem. Soc. 2010; 132: 13624
- 26e De CK, Seidel D. J. Am. Chem. Soc. 2011; 133: 14538
- 26f Mittal N, Sun DX, Seidel D. Org. Lett. 2012; 14: 3084
- 26g Yang X, Bumbu VD, Liu P, Li X, Jiang H, Uffman EW, Guo L, Zhang W, Jiang X, Houk KN, Birman VB. J. Am. Chem. Soc. 2012; 134: 17605
- 27 Yang W, Long Y, Zhang S, Zeng Y, Cai Q. Org. Lett. 2013; 15: 3598
- 28 Long Y, Shi J, Liang H, Zeng Y, Cai Q. Synthesis 2015; 47: 2844
- 29a Mann G, Hartwig JF. J. Am. Chem. Soc. 1996; 118: 13109
- 29b Shelby Q, Kataoka N, Mann G, Hartwig JF. J. Am. Chem. Soc. 2000; 122: 10718
- 29c Paluchi M, Wolfe JP, Buchwald SL. J. Am. Chem. Soc. 1996; 118: 10333
- 29d Torraca KE, Kuwabe S.-I, Buchwald SL. J. Am. Chem. Soc. 2000; 122: 12907
- 29e Wu X, Fors BP, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 9943
- 29f Gowrisankar S, Sergeev AG, Anbarasan P, Spannenberg A, Neumann H, Beller M. J. Am. Chem. Soc. 2010; 132: 11592
- 29g Ylijoki KE. O, Kündig EP. Chem. Commun. 2011; 47: 10608
- 29h Bruno NC, Buchwald SL. Org. Lett. 2013; 15: 2876
- 30 Yang W, Yan J, Long Y, Zhang S, Liu J, Zeng Y, Cai Q. Org. Lett. 2013; 15: 6022
- 31a Xie J.-H, Zhou Q.-L. Acc. Chem. Res. 2008; 41: 581
- 31b Xie J.-H, Zhu S.-H, Zhou Q.-L. Chem. Rev. 2011; 111: 1713
- 31c Xie J.-H, Zhou Q.-L. Acta Chim. Sinica 2014; 72: 778
- 32a Gurwits D. Drug Discovery Today 1999; 4: 142
- 32b Takano Y, Takano M, Yaksh TL. Eur. J. Pharmacol. 1992; 219: 465
- 32c Fumagalli L, Pallavicini M, Budriesi R, Bolchi C, Canovi M, Chiarini A, Chiodini G, Gobbi M, Laurino P, Micucci M, Straniero V, Valoti E. J. Med. Chem. 2013; 56: 6402
- 34 Shi J, Wang T, Huang Y, Zhang X, Wu Y.-D, Cai Q. Org. Lett. 2015; 17: 840
- 35 Rouf A, Aga MA, Kumar B, Tanejia SC. Tetrahedron Lett. 2013; 54: 6420
- 36 Kuwabe S, Torraca KE, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 12202
- 37 Beletskaya IP, Cheprakov AV. Organometallics 2012; 31: 7753
- 38 Yang W, Liu Y, Zhang S, Cai Q. Angew. Chem. Int. Ed. 2015; 54: 8805
For selected reviews about asymmetric desymmetrization, see:
For some important reviews about kinetic resolution, see:
For reviews about copper-catalyzed reactions, see:
For examples of the synthesis of biaryl compounds via chiral substrate-induced asymmetric Ullmann coupling, see:
For selected reviews on enzymatic resolutions of amines, see:
For selected examples of the kinetic resolution or dynamic kinetic resolution of amines or amides by acylation or other reactions, see:
For selected examples of palladium-catalyzed couplings of aryl halides with aliphatic alcohols, see:
For reviews on spirocyclic diphosphine ligands, see: