Synthesis 2016; 48(06): 816-827
DOI: 10.1055/s-0035-1561313
feature
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Vicinal Diacetoxylation of Alkenes under Chiral Iodine(III) Catalysis

Thorsten H. Wöste
a   Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
,
Kilian Muñiz*
a   Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
b   Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain   Email: kmuniz@iciq.es
› Author Affiliations
Further Information

Publication History

Received: 17 November 2015

Accepted after revision: 14 December 2015

Publication Date:
13 January 2016 (online)


Abstract

A procedure for the intermolecular enantioselective dioxygenation of alkenes under iodine(III) catalysis has been developed. This protocol employs Selectfluor as the terminal oxidant together with a defined C 2-symmetric aryl iodide as the organocatalyst. This enantioselective reaction proceeds under mild conditions and converts a series of terminal and internal styrenes into the corresponding vicinal diacetoxylation products with up to 96% ee.

Supporting Information

 
  • References

  • 1 Present address: Dr. T. H. Wöste, Convertec GmbH, Heideweg 2–4, 77880 Sasbach, Germany.
    • 3a Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
    • 3b Zaitsev AB, Adolfsson H. Synthesis 2006; 1725
    • 3c Muñiz K. Chem. Soc. Rev. 2004; 33: 166
    • 3d Donohoe TJ, Callens CK. A, Flores A, Lacy AR, Rathi AH. Chem. Eur. J. 2011; 17: 58
    • 4a Zhdankin VV. Hypervalent Iodine Chemistry Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds. Wiley; Chichester: 2013
    • 4b Stang PJ, Zhdankin VV. Chem. Rev. 1996; 96: 1123
    • 4c Zhdankin VV, Stang PJ. Chem. Rev. 2002; 102: 2523
    • 4d Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 5a Uyanik M, Ishihara K. J. Synth. Org. Chem. Jpn. 2012; 70: 1116
    • 5b Singh FV, Wirth T. Chem. Asian J. 2014; 9: 950
    • 5c Romero RM, Wöste TH, Muñiz K. Chem. Asian J. 2014; 9: 972
    • 5d Berthiol F. Synthesis 2015; 47: 587
  • 6 Koser GF. Top. Curr. Chem. 2003; 208: 137
    • 7a Hirt UH, Spingler B, Wirth T. J. Org. Chem. 1998; 63: 7674
    • 7b Wirth T, Hirt UH. Tetrahedron: Asymmetry 1997; 8: 23
    • 7c Hirt UH, Schuster MF. H, French AN, Wiest OG, Wirth T. Eur. J. Org. Chem. 2001; 1569
    • 7d Boye AC, Meyer D, Ingison CK, French AN, Wirth T. Org. Lett. 2003; 5: 2157
    • 8a Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175
    • 8b Uyanik M, Yasui T, Ishihara K. Tetrahedron 2010; 66: 5841
    • 8c See also: Fujita M, Yoshida Y, Miyata K, Wakisaka A, Sugimura T. Angew. Chem. Int. Ed. 2010; 49: 7068
    • 8d Fujita M, Okuno S, Lee HJ, Sugimura T, Okuyama T. Tetrahedron Lett. 2007; 48: 8691
    • 8e Fujita M, Ookubo Y, Sugimura T. Tetrahedron Lett. 2009; 50: 1298
  • 9 Fujita M, Wakita M, Sugimura T. Chem. Commun. 2011; 47: 3983
    • 10a Röben C, Souto JA, González Y, Lishchynskyi A, Muñiz K. Angew. Chem. Int. Ed. 2011; 50: 9478
    • 10b Souto JA, González Y, Iglesias A, Zian D, Lishchynskyi A, Muñiz K. Chem. Asian J. 2012; 7: 1103
    • 10c Röben C, Souto JA, Escudero-Adán EC, Muñiz K. Org. Lett. 2013; 15: 1008
    • 11a Farid U, Malmedy F, Claveau R, Albers L, Wirth T. Angew. Chem. Int. Ed. 2013; 52: 7018
    • 11b Mizar P, Wirth T. Angew. Chem. Int. Ed. 2014; 53: 5993
    • 11c Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175
    • 11d Uyanik M, Yasui T, Ishihara K. Tetrahedron 2010; 66: 5841
    • 11e Zhang D.-Y, Xu L, Wu H, Gong L.-Z. Chem. Eur. J. 2015; 21: 10314
    • 12a Farid U, Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462
    • 12b Kong W, Feige P, de Haro T, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 2469
  • 13 For a conceptually different approach on enantioselective dichlorination with a combination of ArICl2 and (DHQD)2PHAL, see: Nicolaou KC, Simmons NL, Ying Y, Heretsch PM, Chen JS. J. Am. Chem. Soc. 2011; 133: 8134
    • 14a Fujita M, Mori K, Shimogaki M, Sugimura T. Org. Lett. 2012; 14: 1294
    • 14b Fujita M, Mori K, Shimogaki M, Sugimura T. RSC Adv. 2013; 3: 17717
    • 14c Shimogaki M, Fujita M, Sugimura T. Eur. J. Org. Chem. 2013; 7128

      For reviews on iodine(III) catalysis, see:
    • 15a Richardson RD, Wirth T. Angew. Chem. Int. Ed. 2006; 45: 4402
    • 15b Ochiai M, Miyamoto K. Eur. J. Org. Chem. 2008; 4229
    • 15c Ochiai M. Chem. Rec. 2007; 7: 12
    • 15d Dohi T, Kita Y. Chem. Commun. 2009; 2073
    • 15e Uyanik M, Ishihara K. Chem. Commun. 2009; 2086

      See refs. 5a, 6 and
    • 16a Celik M, Alp C, Coskun B, Gültekin MS, Balci M. Tetrahedron Lett. 2006; 47: 3659
    • 16b Tellitu I, Domínguez E. Tetrahedron 2008; 64: 2465
    • 16c De Mico A, Margarita R, Parlanti L, Piancatelli G, Vescovi A. Tetrahedron 1997; 53: 16877
    • 16d Koser GF, Rebrovic L, Wettach RH. J. Org. Chem. 1981; 46: 4324
    • 16e Moriarty RM, Vaid RK, Koser GF. Synlett 1990; 365
    • 16f Zefirov NS, Zhdankin VV, Dan’kov YV, Sorokin VD, Semerikov VN, Koz’min AS, Caple R, Berglund BA. Tetrahedron Lett. 1986; 27: 3971
  • 17 Richardson RD, Desaize M, Wirth T. Chem. Eur. J. 2007; 13: 6745
  • 18 Haubenreisser S, Wöste TH, Martínez C, Ishihara K, Muñiz K. Angew. Chem. Int. Ed. 2015; 54 in press; DOI: 10.1002/anie.201507180
  • 19 Kang Y.-B, Gade LH. J. Am. Chem. Soc. 2011; 133: 3658
  • 20 For a related BF3 activation, see: Zhong W, Yang J, Meng X, Li Z. J. Org. Chem. 2011; 76: 9997
  • 21 Zhong W, Liu S, Yang J, Meng X, Li Z. Org. Lett. 2012; 14: 3336
  • 22 Kang Y.-B, Gade LH. J. Org. Chem. 2012; 77: 1610
    • 23a Ye C, Twarnley B, Shreeve JM. Org. Lett. 2005; 7: 3961
    • 23b Dohi T, Mochizuki E, Yamashita D, Miyazaki K, Kita Y. Heterocycles 2014; 88: 245
    • 23c Dohi T, Maruyama A, Takenaga N, Senami K, Minamitsuji Y, Fujioka H, Caemmerer SB, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
    • 23d Uyanik M, Yasui T, Ishihara K. Tetrahedron 2010; 66: 5841
  • 24 Crystal structure analyses data of compounds 5c, d were deposited with the Cambridge Crystallographic Data Centre (CCDC). They can be obtained from the CCDC (e-mail: deposit@ccdc.cam.ac.uk) citing the following numbers: CCDC 996364 (5c) and CCDC 996363 (5d).
  • 25 Prévost C. Compt. Rend. 1933; 196: 1129
  • 26 Woodward RB, Brutcher FV. Jr. J. Am. Chem. Soc. 1958; 80: 209
    • 27a Ochiai M In Chemistry of Hypervalent Compounds . Akiba K. Wiley-VCH; New York: 1999: 359
    • 27b Okuyama T, Takino T, Sueda T, Ochiai M. J. Am. Chem. Soc. 1995; 117: 3360
  • 28 Koser GF, Rebrovic L, Wettach RH. J. Org. Chem. 1981; 46: 4324
  • 29 At present, the scope of the new dioxygenation catalysis remains limited to aryl substituted alkene classes such as 2 and 7. This is in agreement with the observation from the corresponding stoichiometric transformations outlined in refs. 9 and 18. Further catalyst development is required to address this point.
  • 30 Chatterjee PN, Roy S. Tetrahedron 2012; 68: 3776
    • 31a Wiedemann SH, Ellman JA, Bergman RG. J. Org. Chem. 2006; 71: 1969
    • 31b Kim E, Koh M, Lim BJ, Park SB. J. Am. Chem. Soc. 2011; 133: 6642
    • 31c Fabio K, Guillon C, Lacey CJ, Lu S.-f, Heindel ND, Ferris CF, Placzek M, Jones G, Brownstein MJ, Simon NG. Bioorg. Med. Chem. 2012; 20: 1337
    • 31d Bambler BR, Altman RA. Org. Lett. 2013; 15: 5578
    • 31e Lölsberg W, Ye S, Schmalz H.-G. Adv. Synth. Catal. 2010; 352: 2023
  • 32 Hu DX, Shibuya GM, Burns NZ. J. Am. Chem. Soc. 2013; 135: 12960
  • 33 Fujita M, Wakita M, Sugimura T. Chem. Commun. 2011; 47: 3983
  • 34 Studte C, Breit B. Angew. Chem. Int. Ed. 2008; 47: 5451