Synthesis 2016; 48(06): 804-815
DOI: 10.1055/s-0035-1561321
short review
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Olefination of Aryl C–H Bonds by Using Directing­ Scaffolds

Sukdev Bag
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India   eMail: dmaiti@chem.iitb.ac.in
,
Debabrata Maiti*
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India   eMail: dmaiti@chem.iitb.ac.in
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 03. November 2015

Accepted after revision: 15. Dezember 2015

Publikationsdatum:
26. Januar 2016 (online)


Abstract

Site selective C–H bond activation/C–C bond formation is an ideal target for organic chemists owing to the ubiquitous nature of C–H bonds in natural products. A particular aryl C–H bond can be predictably activated by a directing group. However, the majority of strong and weak coordinating directing groups have been implemented for ortho­-C–H bond activation/C-alkenylation. More recently, meta-C–H functionalization has been promoted by fine-tuning directing templates. In this short review, we have summarized recent progress in palladium-catalyzed directing group/template-assisted ortho/meta-C–H olefination.

1 Introduction

2 Proximal C–H Olefination

3 Distal C–H Olefination

4 Conclusions

 
  • References

  • 1 Phipps RJ, Gaunt MJ. Science (Washington, D. C.) 2009; 323: 1593
    • 2a Cho J.-Y, Tse MK, Holmes D, Maleczka RE. Jr, Smith III MR. Science (Washington, D. C.) 2002; 295: 305
    • 2b Kakiuchi F, Murai S. Acc. Chem. Res. 2002; 35: 826
    • 2c Kakiuchi F, Chatani N. Adv. Synth. Catal. 2003; 345: 1077
    • 2d Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 2e Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 2f Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 2g Ackermann L. Chem. Rev. 2011; 111: 1315
    • 2h Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 3a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 3b Stanforth PS. Tetrahedron 1998; 54: 263
    • 3c Suzuki A. J. Organomet. Chem. 1999; 576: 147
    • 3d Culkin DA, Hartwig JF. Acc. Chem. Res. 2003; 36: 234
    • 3e Yin L, Liebscher J. Chem. Rev. 2007; 107: 133
    • 3f Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
    • 3g Seechurn CC. C. J, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 4a Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn. 1971; 44: 581
    • 4b Heck RF. Acc. Chem. Res. 1979; 12: 146
    • 4c Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
    • 4d Dounay AB, Overman LE. Chem. Rev. 2003; 103: 2945
    • 4e Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
    • 5a Moritani I, Fujiwara Y. Tetrahedron Lett. 1967; 8: 1119
    • 5b Jia CG, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 844
    • 5c Zhou L, Lu W. Chem. Eur. J. 2014; 20: 634
    • 6a Jia C, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
    • 6b Ritleng V, Sirlin C, Pfeffer M. Chem. Rev. 2002; 102: 1731
    • 6c Sun C.-L, Li H, Yu D.-G, Yu M, Zhou X, Lu X.-Y, Huang K, Zheng S.-F, Li B.-J, Shi Z.-J. Nat. Chem. 2010; 2: 1044
    • 6d Zhang X, Fan S, He C.-Y, Wan X, Min Q.-Q, Yang J, Jiang Z.-X. J. Am. Chem. Soc. 2010; 132: 4506
    • 6e Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
    • 6f She Z, Shi Y, Huang Y, Cheng Y, Song F, You J. Chem. Commun. 2014; 50: 13914
    • 6g Ying C.-H, Yan S.-B, Duan W.-L. Org. Lett. 2014; 16: 500
    • 7a Duong HA, Gilligan RE, Cooke ML, Phipps RJ, Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 463
    • 7b Saidi O, Marafie J, Ledger AE. W, Liu PM, Mahon MF, Kociok-Kohn G, Whittlesey MK, Frost CG. J. Am. Chem. Soc. 2011; 133: 19298
    • 7c Chen B, Hou X.-L, Li Y.-X, Wu Y.-D. J. Am. Chem. Soc. 2011; 133: 7668
    • 7d Julia-Hernandez F, Simonetti M, Larrosa I. Angew. Chem. Int. Ed. 2013; 52: 11458
    • 7e Hofmann N, Ackermann L. J. Am. Chem. Soc. 2013; 135: 5877
    • 8a Ackerman L, Vicente R, Kapadi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 8b Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 8c Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
  • 9 Cai G, Fu Y, Li Y, Wan X, Shi Z. J. Am. Chem. Soc. 2007; 129: 7666
  • 10 Capito E, Brown JM, Ricci A. Chem. Commun. 2005; 1854
  • 11 Garcia-Rubia A, Arrayas RG, Carretero JC. Angew. Chem. Int. Ed. 2009; 48: 6511
  • 12 Wang L, Guo W, Zhang X.-X, Xia X.-D, Xiao W.-J. Org. Lett. 2012; 14: 740
  • 13 Liu Q, Li Q, Ma Y, Jia Y. Org. Lett. 2013; 15: 4528
  • 14 Wang L, Liu S, Li Z, Yu Y. Org. Lett. 2011; 13: 6137
  • 15 Shao J, Chen W, Giulianotti MA, Houghten RA, Yu Y. Org. Lett. 2012; 14: 5452
  • 16 Garcia-Rubia A, Urones B, Arrayas RG, Carretero JC. Angew. Chem. Int. Ed. 2011; 50: 10927
  • 17 Cong X, You J, Gao G, Lan J. Chem. Commun. 2013; 49: 662
  • 18 Liu B, Jiang H.-Z, Shi B.-F. J. Org. Chem. 2014; 79: 1521
  • 19 Zhu C, Falck JR. Org. Lett. 2011; 13: 1214
  • 20 Li D.-D, Yuan T.-T, Wang G.-W. Chem. Commun. 2011; 47: 12789
  • 21 Dai H.-X, Stepan AF, Plummer MS, Zhang Y.-H, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7222
  • 22 Wang D.-H, Engle KM, Shi B.-F, Yu J.-Q. Science (Washington, D. C.) 2010; 327: 315
  • 23 Shi B.-F, Zhang Y.-H, Lam JK, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 460
  • 24 Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2010; 49: 6169
  • 25 Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 5767
  • 26 Dai H.-X, Li G, Zhang X.-G, Stepan AF, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 7567
  • 27 Lu Y, Wang D.-H, Engle KM, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 5916
  • 28 Huang C, Chottopadhyay B, Gevorgyan G. J. Am. Chem. Soc. 2011; 133: 12406
  • 29 Wang C, Ge H. Chem. Eur. J. 2011; 17: 14371
  • 30 Zhang C, Ji J, Sun P. J. Org. Chem. 2014; 79: 3200
  • 31 Meng X, Kim S. Org. Lett. 2013; 15: 1910
  • 32 Chan LY, Kim S, Ryu T, Lee PH. Chem. Commun. 2013; 49: 4682
  • 33 Wang H.-L, Hu R.-B, Zhang H, Zhou A.-X, Yang S.-D. Org. Lett. 2013; 15: 5302
  • 34 Yu M, Xie Y, Xie C, Zhang Y. Org. Lett. 2012; 14: 2164
  • 35 Li G, Leow D, Wan L, Yu J.-Q. Angew. Chem. Int. Ed. 2013; 52: 1245
  • 36 Wang B, Shen C, Yao J, Yin H, Zhang Y. Org. Lett. 2014; 16: 46
  • 37 Li G, Wan L, Zhang G, Leow D, Spangler J, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 4391
  • 38 Hu J, Guan M, Han J, Huang Z.-B, Shi D.-Q, Zhao Y. J. Org. Chem. 2015; 80: 7896
  • 39 Cho SH, Hwang SJ, Chang S. J. Am. Chem. Soc. 2008; 130: 9254
  • 40 Gandeepan P, Cheng C.-H. J. Am. Chem. Soc. 2012; 134: 5738
  • 41 Deb A, Bag S, Kancherla R, Maiti D. J. Am. Chem. Soc. 2014; 136: 13602
  • 42 Zhang Y.-H, Shi B.-F, Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 5072
  • 43 Ye M, Gao G.-L, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 6964
  • 44 Leow D, Li G, Mei T.-S, Yu J.-Q. Nature (London) 2012; 486: 518
  • 45 Lee S, Lee H, Tan KL. J. Am. Chem. Soc. 2013; 135: 18778
  • 46 Tang R.-Y, Li G, Yu J.-Q. Nature (London) 2014; 507: 215
  • 47 Yang G, Lindovska P, Zhu D, Kim J, Wang P, Tang R.-Y, Movassaghi M, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 10807
  • 48 Bera M, Modak A, Patra T, Maji A, Maiti D. Org. Lett. 2014; 16: 5760
  • 49 Deng Y, Yu J.-Q. Angew. Chem. Int. Ed. 2015; 54: 888
  • 50 Bera M, Maji A, Sahoo SK, Maiti D. Angew. Chem. Int. Ed. 2015; 54: 8515
  • 51 Li S, Ji H, Cai L, Li G. Chem. Sci. 2015; 6: 5595