Synthesis 2016; 48(07): 960-973
DOI: 10.1055/s-0035-1561328
short review
© Georg Thieme Verlag Stuttgart · New York

Merging Transition-Metal Activation and Aminocatalysis

Marta Meazza
Faculty of Natural & Environmental Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK   Email: rrt1f11@soton.ac.uk
,
Ramon Rios*
Faculty of Natural & Environmental Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK   Email: rrt1f11@soton.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 12 November 2015

Accepted after revision: 18 December 2015

Publication Date:
26 January 2016 (online)


This review is dedicated to Professor Choong Eui Song on the occasion of his 60th birthday.

Abstract

In this review the principal enantioselective methodologies merging transition-metal catalysis and aminocatalysis are disclosed.

1 Introduction

2 Transition-Metal and Enamine Catalysis

3 Transition-Metal and Iminium Catalysis

4 Transition-Metal Catalysis and Organocascade (Iminium/Enamine) Activation

5 Conclusions and Perspectives

 
  • References

  • 1 Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
  • 2 List B, Lerner RA, Barbas III CF. J. Am. Chem. Soc. 2000; 122: 2395
  • 3 Ibrahem I, Cordova A. Angew. Chem. Int. Ed. 2006; 45: 1952
  • 4 Bihelovic F, Matovic R, Vulovic B, Saicic RN. Org. Lett. 2007; 9: 5063
  • 5 Vulovic B, Bihelovic F, Matovic R, Saicic RN. Tetrahedron 2009; 65: 10485
  • 6 Jiang G, List B. Angew. Chem. Int. Ed. 2011; 50: 9471
  • 7 Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science 2013; 340: 1065
  • 8 Krautwald S, Schafroth MA, Sarlah D, Carreira EM. J. Am. Chem. Soc. 2014; 136: 3020
  • 9 Schafroth MA, Zuccarello G, Krautwald S, Sarlah D, Carreira EM. Angew. Chem. Int. Ed. 2014; 53: 13898
  • 10 Xiao J. Org. Lett. 2012; 14: 1716
  • 11 Afewerki S, Ibrahem I, Rydfjord J, Breistein P, Cordova A. Chem. Eur. J. 2012; 18: 2972
  • 12 Yoshida M, Terumine T, Masaki E, Hara S. J. Org. Chem. 2013; 78: 10853
  • 13 Zhao X, Liu D, Xie F, Liu Y, Zhang W. Org. Biomol. Chem. 2011; 9: 1871
  • 14 Wang PS, Lin HC, Zhai YJ, Han ZY, Gong LZ. Angew. Chem. Int. Ed. 2014; 53: 12218
  • 15 Li M, Datta S, Barber DM, Dixon DJ. Org. Lett. 2012; 14: 6350
    • 16a Montaignac B, Praveen C, Vitale MR, Michelet V, Ratovelomanana-Vidal V. Chem. Commun. 2012; 48: 6559
    • 16b Montaignac B, Vitale MR, Ratovelomanana-Vidal V, Michelet V. Eur. J. Org. Chem. 2011; 3723
    • 16c Montaignac B, Oestlund V, Vitale MR, Ratovelomanana-Vidal V, Michelet V. Org. Biomol. Chem. 2012; 10: 2300
  • 17 Allen AE, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 4986
  • 18 Allen AE, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 4260
  • 19 Skucas E, MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 9090
  • 20 Ikeda M, Miyake Y, Nishibayashi Y. Angew. Chem. Int. Ed. 2010; 49: 7289
  • 21 Motoyama K, Ikeda M, Miyake Y, Nishibayashi Y. Eur. J. Org. Chem. 2011; 2239
  • 22 Ikeda M, Miyake Y, Nishibayashi Y. Organometallics 2012; 31: 3810
  • 23 Yoshida A, Ikeda M, Hattori G, Miyake Y, Nishibayashi Y. Org. Lett. 2011; 13: 592
  • 24 Rueping M, Volla CM. R, Atodiresei I. Org. Lett. 2012; 14: 4642
  • 25 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
  • 26 Nagib DA, Scott ME, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875
  • 27 Shih H.-W, Vander Wal MN, Grange RL, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 13600
  • 28 Zhu Y, Zhang L, Luo S. J. Am. Chem. Soc. 2014; 136: 14642
    • 29a Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
    • 29b Evans DA, Bartroli J, Shih TL. J. Am. Chem. Soc. 1981; 103: 2127
  • 30 Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
  • 31 Paras NA, MacMillan DW. C. J. Am. Chem. Soc. 2001; 123: 4370
  • 32 Yang JW, Hechavarria FM. T, Vignola N, List B. Angew. Chem. Int. Ed. 2005; 44: 108
  • 33 Marigo M, Franzen J, Poulsen TB, Zhuang W, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 6964
  • 34 Enders D, Huettl MR. M, Grondal C, Raabe G. Nature 2006; 441: 861
  • 35 Vesely J, Rios R, Ibrahem I, Zhao GL, Eriksson L, Cordova A. Chem. Eur. J. 2008; 14: 2693
  • 36 Xie H, Zu L, Li H, Wang J, Wang W. J. Am. Chem. Soc. 2007; 129: 10886
    • 37a Ibrahem I, Santoro S, Himo F, Cordova A. Adv. Synth. Catal. 2011; 353: 245
    • 37b Kacprzynski MA, Kazane SA, May TL, Hoveyda AH. Org. Lett. 2007; 9: 3187
  • 38 Afewerki S, Breistein P, Pirttila K, Deiana L, Dziedzic P, Ibrahem I, Cordova A. Chem. Eur. J. 2011; 17: 8784
  • 39 Ibrahem I, Breistein P, Cordova A. Angew. Chem. Int. Ed. 2011; 50: 12036
  • 40 Meazza M, Ceban V, Pitak MB, Coles SJ, Rios R. Chem. Eur. J. 2014; 20: 16853
  • 41 Best D, Kujawa S, Lam HW. J. Am. Chem. Soc. 2012; 134: 18193
  • 42 Ceban V, Putaj P, Meazza M, Pitak MB, Coles SJ, Vesely J, Rios R. Chem. Commun. 2014; 50: 7447
  • 43 Belot S, Vogt KA, Besnard C, Krause N, Alexakis A. Angew. Chem. Int. Ed. 2009; 48: 8923
  • 44 Jensen KL, Franke PT, Arroniz C, Kobbelgaard S, Jørgensen KA. Chem. Eur. J. 2010; 16: 1750
  • 45 Yu C, Zhang Y, Zhang S, He J, Wang W. Tetrahedron Lett. 2010; 51: 1742
  • 46 Zhao G.-L, Ullah F, Deiana L, Lin S, Zhang Q, Sun J, Ibrahem I, Dziedzic P, Cordova A. Chem. Eur. J. 2010; 16: 1585
  • 47 Santoro S, Deiana L, Zhao G.-L, Lin S, Himo F, Cordova A. ACS Catal. 2014; 4: 4474
  • 48 Deiana L, Ghisu L, Afewerki S, Verho O, Johnston EV, Hedin N, Bacsik Z, Cordova A. Adv. Synth. Catal. 2014; 356: 2485
  • 49 Deiana L, Ghisu L, Cordova O, Afewerki S, Zhang R, Cordova A. Synthesis 2014; 46: 1303
  • 50 Lin S, Zhao G.-L, Deiana L, Sun J, Zhang Q, Leijonmarck H, Cordova A. Chem. Eur. J. 2010; 16: 13930
  • 51 Sun W, Zhu G, Hong L, Wang R. Chem. Eur. J. 2011; 17: 13958
  • 52 Ma G, Afewerki S, Deiana L, Palo-Nieto C, Liu L, Sun J, Ibrahem I, Cordova A. Angew. Chem. Int. Ed. 2013; 52: 6050
  • 53 Afewerki S, Ma G, Ibrahem I, Liu L, Sun J, Cordova A. ACS Catal. 2015; 5: 1266
  • 54 Yoon HS, Ho XH, Jang JK, Lee HJ, Kim SJ, Jang HY. Org. Lett. 2015; 14: 3272
  • 55 Meazza M, Light ME, Mazzanti A, Rios R. Chem. Sci. 2015; DOI: 10.1039/c5sc03597j