Synthesis 2016; 48(21): 3812-3820
DOI: 10.1055/s-0035-1561463
paper
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Synthesis of the Revised Structure of γ-Lactone Polyketide from Diaporthe sp. SXZ-19 and Its C-8 Epimer

K. Siva Nagi Reddy
Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   Email: gowravaramsr@yahoo.com   Email: sabitha@iict.res.in
,
A. Yugendar Reddy
Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   Email: gowravaramsr@yahoo.com   Email: sabitha@iict.res.in
,
Gowravaram Sabitha*
Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   Email: gowravaramsr@yahoo.com   Email: sabitha@iict.res.in
› Author Affiliations
Further Information

Publication History

Received: 16 March 2016

Accepted after revision: 29 April 2016

Publication Date:
15 June 2016 (online)


Abstract

Revised structure of γ-lactone polyketide from Diaporthe sp. SXZ-19 and its C8-epimer were synthesized from TBS protected (S)-lactaldehyde and 2,3-O-cyclohexylidene-d-glyceraldehyde, which was derived from d-mannitol. The target γ-lactones were prepared via a common alkyne intermediate utilizing alkyne-aldehyde coupling reactions by changing the reaction conditions. In addition, Carreira and Ohira–Bestmann reactions were used as key steps to achieve the targets.

Supporting Information

 
  • References

    • 1a Hsieh TJ, Chang FR, Chia YC, Chen CY, Liu HC, Chiu HF, Wu YC. J. Nat. Prod. 2001; 64: 1157
    • 1b Kuhnt D, Anke T, Besl H, Bross M, Herrmann R, Mocek U, Steffan B, Steglich W. J. Antibiot. 1990; 43: 1413
    • 1c Ortega MJ, Zubia E, Ocana JM, Naranjo S, Salvá J. Tetrahedron 2000; 56: 3963
    • 1d Rao YS. Chem. Rev. 1964; 64: 353
    • 1e Rao YS. Chem. Rev. 1976; 76: 625
    • 1f Ma S, Shi Z, Yu Z. Tetrahedron 1999; 55: 12137
    • 1g Shing TK. M, Tai VW. F, Tsui HC. J. J. Chem. Soc., Chem. Commun. 1994; 1293
    • 1h Shing TK. M, Tsui HC, Zhou ZH. J. Org. Chem. 1995; 60: 3121
    • 1i Didry N, Dubreuil L, Pinkas M. Phytother. Res. 1993; 7: 21
    • 1j Martin ML, Roman LS, Dominguez A. Planta Med. 1990; 56: 66
    • 1k Alonso D, Font J, Ortuno RM. Tetrahedron 1991; 47: 5895
  • 2 Liu Y, Hu Z, Lin X, Lu C, Shen Y. Nat. Prod. Res. 2013; 27: 2100
  • 3 Yadav JS, Dutta P, Ganganna B, Srinivas E. Eur. J. Org. Chem. 2015; 6891
    • 4a Schmid CR, Bryant JD, Dowlatzedah M, Phillips JL, Prather DE, Schantz RD, Sear NL, Vianco CS. J. Org. Chem. 1991; 56: 4056
    • 4b Chattopadhyay A, Mamdapur VR. J. Org. Chem. 1995; 60: 585
    • 4c Sugiyama T, Suguwara H, Watanabe M, Yamashita K. Agric. Biol. Chem. 1984; 48: 1841
    • 5a Frantz DE, Fässler R, Carreira EM. J. Am. Chem. Soc. 2000; 122: 1806
    • 5b Anand NK, Carreira EM. J. Am. Chem. Soc. 2001; 123: 9687
  • 6 For determination of the absolute stereochemistry of secondary/secondary diols by a modified Mosher’s method, see: Ohtani I, Kusumi J, Kashman Y, Kakisawa H. J. Am. Chem. Soc. 1991; 113: 4092
  • 8 Sabitha G, Das SK, Praveen A, Yadav JS. Tetrahedron Lett. 2013; 54: 1097
  • 9 The diastereomeric ratio of the product was determined using a Shimadzu high-performance liquid chromatography (HPLC) system equipped with a chiral HPLC column (Chiralcel OD) and a UV detector at an absorbance of 254 nm. ATLANTIS C18 150 × 4.6 mm, 5 μ (column) and a solvent system of 85% MeCN in 0.1% formic acid at a flow rate of 1.0 mL/min were used. t R = 23.6 and 25.0 min.
    • 10a Hansen TM, Florence GJ, Lugo-Mas P, Chen J, Abrams JN, Forsyth CJ. Tetrahedron Lett. 2003; 44: 57
    • 10b Merten J, Wang Y, Krause T, Kataeva O, Metz P. Chem. Eur. J. 2011; 17: 3332
    • 11a Mukaiyama T, Suzuki K, Soai K, Sato T. Chem. Lett. 1979; 447
    • 11b Sabitha G, Senkara Rao A, Sandeep A, Yadav JS. Eur. J. Org. Chem. 2014; 455