Synthesis 2016; 48(19): 3207-3216
DOI: 10.1055/s-0035-1561468
paper
Georg Thieme Verlag Stuttgart · New York

Asymmetric Synthesis of Tetrahydrobenzofurans and Annulated Dihydropyrans via Cooperative One-Pot Organo- and Silver-Catalysis

Uğur Kaya
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   eMail: enders@rwth-aachen.de
,
Pankaj Chauhan
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   eMail: enders@rwth-aachen.de
,
Kristina Deckers
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   eMail: enders@rwth-aachen.de
,
Rakesh Puttreddy
b   Department of Chemistry, Nanoscience Center, University of Jyvaskyla, 40014 JYU, Finland
,
Kari Rissanen
b   Department of Chemistry, Nanoscience Center, University of Jyvaskyla, 40014 JYU, Finland
,
Gerhard Raabe
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   eMail: enders@rwth-aachen.de
,
Dieter Enders*
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   eMail: enders@rwth-aachen.de
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 29. April 2016

Accepted: 02. Mai 2016

Publikationsdatum:
23. Juni 2016 (online)


In memory of Professor Jean Normant

Abstract

A low catalyst loading of a squaramide (0.5 mol%) and a silver(I) salt (1 mol%) efficiently catalyzes a one-pot asymmetric Michael addition/hydroalkoxylation reaction between 1,3-diketones and alkyne-tethered nitroalkenes. Depending on the 1,3-dicarbonyl substrate this cooperative catalytic approach opens access to tetrahydrobenzofurans or annulated dihydropyrans in moderate to excellent yields and very good to excellent enantioselectivities.

Supporting Information

 
  • References

    • 1a Sainsbury M. In Heterocyclic Chemistry . Abel EW. The Royal Society of Chemistry; Cambridge: 2001: 58
    • 1b Wolfe JP. Hay MB. Tetrahedron 2007; 63: 261
    • 1c Miyabe H. Miyata O. Naito T. In Heterocycles in Natural Product Synthesis . Majumdar KC. Chattopadhyay SK. Wiley-VCH; Weinheim: 2011: 153
    • 1d Lorente A. Lamariano-Merketegi J. Albericio F. Álvarez M. Chem. Rev. 2013; 113: 4567
    • 1e Dar AM. Shamsuzzaman Eur. Chem. Bull. 2015; 4: 249
    • 1f Kumar KA. Renuka N. Kumar GV. Lokeshwari DM. J. Chem. Pharm. Res. 2015; 7: 693
    • 2a Juo R.-R. Herz W. J. Org. Chem. 1985; 50: 700
    • 2b Srikrishna A. Krishnan K. Tetrahedron Lett. 1988; 29: 4995
    • 2c Tanrisever N. Fischer NH. Williamson GB. Phytochemistry 1988; 27: 2523
    • 2d Aso M. Qjida A. Yang G. Cha O.-J. Osawa E. Kanematsu K. J. Org. Chem. 1993; 58: 3960
    • 2e Lee YR. Lee GJ. Kang KY. Bull. Korean Chem. Soc. 2002; 23: 1477
  • 3 Joshi SC. Mathela CS. Pharmacog. Res. 2012; 4: 80
  • 4 Jung HW. Mahesh R. Park JH. Boo YC. Park KM. Park Y.-K. Int. Immunopharmacol. 2010; 10: 155
    • 5a Gong J. Lin G. Sun W. Li C.-C. Yang Z. J. Am. Chem. Soc. 2010; 132: 16745
    • 5b Lu P. Mailyan A. Gu Z. Guptill DM. Wang H. Davies HM. L. Zakarian A. J. Am. Chem. Soc. 2014; 136: 17738
    • 5c Zheng C. Dubovyk I. Lazarski KE. Thomson RJ. J. Am. Chem. Soc. 2014; 136: 17750
    • 5d Zhang W.-B. Lin G. Shao W.-B. Gong J.-X. Yang Z. Chem. Asian J. 2015; 10: 903
    • 5e Zhang W.-B. Shao W.-B. Li F.-Z. Gong J.-X. Yang Z. Chem. Asian J. 2015; 10: 1874
    • 6a Adili A. Tao Z.-L. Chen D.-F. Han Z.-Y. Org. Biomol. Chem. 2015; 13: 2247
    • 6b Wu B. Gao X. Yan Z. Huang W.-X. Zhou Y.-G. Tetrahedron Lett. 2015; 56: 4334
    • 7a Barange DK. Raju BR. Kavala V. Kuo C.-W. Tu Y.-C. Yao C.-F. Tetrahedron 2010; 66: 3754
    • 7b Han Y. Hou H. Yao R. Fu Q. Yan C.-G. Synthesis 2010; 4061
    • 7c Rueping M. Parra A. Uria U. Besselièvre F. Merino E. Org. Lett. 2010; 12: 5680
    • 7d Devi RB. Henrot M. De Paolis M. Maddaluno J. Org. Biomol. Chem. 2011; 9: 6509
    • 7e Dong L. Deng L. Lim YH. Leung GY. C. Chen DY.-K. Chem. Eur. J. 2011; 17: 5778
    • 7f Wu M.-Y. Wang M.-Q. Li K. Feng X.-W. He T. Wang N. Yu W.-Q. Tetrahedron Lett. 2011; 52: 679
    • 7g Chawla R. Singh AK. Yadav LD. S. Tetrahedron Lett. 2012; 53: 3382
    • 7h Jonek A. Berger S. Haak E. Chem. Eur. J. 2012; 18: 15504
    • 7i Liu Z. Fan G.-P. Wang G.-W. Chem. Commun. 2012; 48: 11665
    • 7j Kalpogiannaki D. Martini C.-I. Nikopoulou A. Nyxas JA. Pantazi V. Hadjiarapoglou LP. Tetrahedron 2013; 69: 1566
    • 7k Xia L. Lee YR. Adv. Synth. Catal. 2013; 355: 1261
    • 7l Yao C. Wang Y. Li T. Yu C. Li L. Wang C. Tetrahedron 2013; 69: 10593
    • 7m Kasare S. Bankar SK. Ramasastry SS. V. Org. Lett. 2014; 16: 4284
    • 7n Bosnidou A.-E. Kalpogiannaki D. Karanestora S. Nixas JA. Hadjiarapoglou LP. J. Org. Chem. 2015; 80: 1279
    • 7o Riveira MJ. Quiroga GN. Mata EG. Gandon V. Mischne MP. J. Org. Chem. 2015; 80: 6515
    • 7p Wang S. He L.-Y. Guo L.-N. Synthesis 2015; 47: 3191
    • 7q Wei J. Nie B.-J. Peng R. Cheng X.-H. Wang S. He P. Synlett 2016; 27: 626
    • 7r Kale A. Chennapuram M. Bingi C. Nanubolu JB. Atmakur K. Org. Biomol. Chem. 2016; 14: 582
    • 7s Liu W. Lai X. Zha G. Xu Y. Sun P. Xia T. Shen Y. Org. Biomol. Chem. 2016; 14: 3603
  • 8 Sinha D. Biswas A. Singh VK. Org. Lett. 2015; 17: 3302
  • 9 Feng J. Lin L. Yu K. Liu X. Feng X. Adv. Synth. Catal. 2015; 357: 1305
  • 10 Calter MA. Korotkov A. Org. Lett. 2015; 17: 1385
  • 11 El-Sepelgy O. Haseloff S. Alamsetti SK. Schneider C. Angew. Chem. Int. Ed. 2014; 53: 7923
  • 12 Kumar RK. Bi X. Chem. Commun. 2016; 52: 853
    • 14a Naodovic M. Yamamoto H. Chem. Rev. 2008; 108: 3132
    • 14b Yamamoto Y. Chem. Rev. 2008; 108: 3199
    • 14c Weibel J.-M. Blanc A. Pale P. Chem. Rev. 2008; 108: 3149
    • 14d Álvarez-Corral M. Munoz-Dorado M. Rodríguez-García I. Chem. Rev. 2008; 108: 3174
    • 14e Belmont P. Parker E. Eur. J. Org. Chem. 2009; 6075
    • 14f Fang G. Bi X. Chem. Soc. Rev. 2015; 44: 8124
    • 14g Sekine K. Yamada T. Chem. Soc. Rev. 2016; 45 DOI: in press; 10.1039/c5cs00895f.

      For examples of merging organo- and transition metal-catalysis, see:
    • 15a Ding Q. Wu J. Org. Lett. 2007; 9: 4959
    • 15b Shao Z. Zhang H. Chem. Soc. Rev. 2009; 38: 2745
    • 15c Zhong C. Shi X. Eur. J. Org. Chem. 2010; 2999
    • 15d Arróniz C. Gil-González A. Semak V. Escolano C. Bosch J. Amat M. Eur. J. Org. Chem. 2011; 3755
    • 15e Loh CC. J. Enders D. Chem. Eur. J. 2012; 18: 10212
    • 15f Du Z. Shao Z. Chem. Soc. Rev. 2013; 42: 1337
    • 15g Deng Y. Kumar S. Wang H. Chem. Commun. 2014; 50: 4272
    • 16a Hack D. Loh CC. J. Hartmann JM. Raabe G. Enders D. Chem. Eur. J. 2014; 20: 3917
    • 16b Hack D. Chauhan P. Deckers K. Hermann GN. Mertens L. Raabe G. Enders D. Org. Lett. 2014; 16: 5188
    • 16c Hack D. Chauhan P. Deckers K. Mizutani Y. Raabe G. Enders D. Chem. Commun. 2015; 51: 2266
    • 16d Hack D. Dürr AB. Deckers K. Chauhan P. Seling N. Rübenach L. Mertens L. Raabe G. Schoenebeck F. Enders D. Angew. Chem. Int. Ed. 2016; 53: 1797
    • 16e Kaya U. Chauchan P. Hack D. Deckers K. Puttreddy R. Rissanen K. Enders D. Chem. Commun. 2016; 52: 1669
    • 17a Alemán J. Parra A. Jiang H. Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
    • 17b Storer RI. Aciro C. Jones LH. Chem. Soc. Rev. 2011; 40: 2330
    • 17c Ni X. Li X. Wang Z. Cheng J.-P. Org. Lett. 2014; 16: 1786
    • 17d Chauhan P. Mahajan S. Kaya U. Hack D. Enders D. Adv. Synth. Catal. 2015; 357: 253
  • 18 CCDC 1474771 (5a) and CCDC 1474975 (5d) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 19 Yang W. Du D.-M. Adv. Synth. Catal. 2011; 353: 1241
    • 20a Malerich JP. Hagihara K. Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
    • 20b Zhu Y. Malerich JP. Rawal VH. Angew. Chem. Int. Ed. 2010; 49: 153