Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(04): 849-879
DOI: 10.1055/s-0035-1561499
DOI: 10.1055/s-0035-1561499
paper
Bismuth- and Iron-Catalyzed Three-Component Synthesis of α-Amino Acid Derivatives: A Simple and Convenient Route to α-Arylglycines
Further Information
Publication History
Received: 07 June 2016
Accepted: 13 June 2016
Publication Date:
29 July 2016 (online)
‡ These authors contributed equally to this study.
Abstract
Efficient bismuth- and iron-catalyzed three-component syntheses of α-arylglycines have been developed. These methods provide a general, atom-economic route to various N-protected α-arylglycines starting from readily available amides (or carbamates), glyoxalates, and (hetero)arenes with water as the only by-product. Scope and limitations of bismuth- and iron-catalyzed reactions are discussed and compared. In addition, mechanistic investigations as well as initial forays into stereoselective three-component reactions are presented.
Key words
multicomponent reactions - iron - bismuth - aza-Friedel–Crafts reaction - amino acids - homogeneous catalysisSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561499.
- Supporting Information
-
References
- 1 Berg JM, Tymoczko JM, Stryer L. Biochemistry . W. H. Freeman; New York: 2007
- 2 Hughes AB. Amino Acids, Peptides and Proteins in Organic Chemistry. Wiley-VCH; Weinheim: 2011
- 3 Kadish KM, Smith KM, Guilard R. The Porphyrin Handbook . Academic Press; San Diego: 2000
- 4 van Bambeke F, van Laethem Y, Courvalin P, Tulkens PM. Drugs 2004; 64: 913
- 5a Leemans E, Fisher JF, Mobashery S. Antimicrobials 2014; 59
- 5b Marcone GL, Marinelli F. Antimicrobials 2014; 85
- 5c Campoli-Richards DM, Brogden RN, Faulds D. Drugs 1990; 40: 449
- 5d Wiseman LR, Benfield P. Drugs 1993; 45: 295
- 6 Plosker GL, Lyseng-Williamson KA. Drugs 2007; 67: 613
- 7 Matsuzaki K, Ikeda H, Ogino T, Matsumoto A, Woodruff HB, Tanaka H, Omura S. J. Antibiot. 1994; 47: 1173
- 8a Williams RM, Hendrix JA. Chem. Rev. 1992; 92: 889
- 8b Nájera C, Sansano JM. Chem. Rev. 2007; 107: 4584
- 9a Zhao L, Basle O, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 4106
- 9b Beenen MA, Weix DJ, Ellman JA. J. Am. Chem. Soc. 2006; 128: 6304
- 9c Shang G, Yang Q, Zhang X. Angew. Chem. Int. Ed. 2006; 45: 6360
- 9d Lee EC, Fu GC. J. Am. Chem. Soc. 2007; 129: 12066
- 9e Hirner S, Panknin O, Edefuhr M, Somfai P. Angew. Chem. Int. Ed. 2008; 47: 1907
- 9f Lee S, Beare NA, Hartwig JK. J. Am. Chem. Soc. 2001; 123: 8410
- 9g Saaby S, Fang X, Gathergood N, Jorgensen KA. Angew. Chem. Int. Ed. 2000; 39: 4114
- 9h Mita T, Chen J, Sugawara M, Sato Y. Angew. Chem. Int. Ed. 2011; 50: 1393
- 9i Huang Z, Zhang J, Wang N.-X. Tetrahedron 2011; 67: 1788
- 10a Mannich C, Krösche W. Arch. Pharm. 1912; 250: 647
- 10b Kobayashi S, Ueno M In Comprehensive Asymmetric Catalysis . Supplement 1; Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 2004: 143-159
- 10c Cordova A. Acc. Chem. Res. 2004; 37: 102
- 11a Strecker A. Ann. Chem. Pharm. 1850; 75: 27
- 11b Wang J, Liu X, Feng X. Chem. Rev. 2011; 111: 6947
- 12a Petasis NA, Akritopoulou I. Tetrahedron Lett. 1993; 34: 583
- 12b Petasis NA, Goodman A, Zavialov IA. Tetrahedron 1997; 53: 16463
- 12c Petasis NA, Zavialov IA. J. Am. Chem. Soc. 1998; 120: 11798
- 12d Candeias NR, Montalbano F, Cal PM. S. D, Gois PM. P. Chem. Rev. 2010; 110: 6169
- 13a Salama TA. Synlett 2013; 24: 713
- 13b Nandi GC, Samai S, Kumar R, Singh MS. Tetrahedron Lett. 2009; 50: 7220
- 13c Shirakawa S, Kobayashi S. Org. Lett. 2006; 8: 4939
- 13d Ben-Ishai D, Altman J, Bernstein Z, Peled N. Tetrahedron 1977; 34: 467
- 14a Yazici A, Pyne SG. Synthesis 2009; 339
- 14b Petrini M, Torregiani E. Synthesis 2007; 159
- 14c Speckamp WN, Moolenaar MJ. Tetrahedron 2000; 56: 3817
- 14d Zaugg H. Synthesis 1984; 85
-
15a Trost BM. Science 1991; 254: 1471
- 15b Anastas PT, Warner JC. Green Chemistry – Theory and Practice . Oxford University Press; Oxford: 1998
- 16a Schneider AE, Manolikakes G. Synlett 2013; 24: 2057
- 16b Halli J, Manolikakes G. Eur. J. Org. Chem. 2013; 7471
- 16c Beisel T, Manolikakes G. Org. Lett. 2013; 15: 6046
- 16d Schneider AE, Beisel T, Shemet A, Manolikakes G. Org. Biomol. Chem. 2014; 12: 2356
- 16e Schneider AE, Manolikakes G. J. Org. Chem. 2015; 80: 6193
- 16f Beisel T, Manolikakes G. Org. Lett. 2015; 17: 3162
- 16g Beisel T, Manolikakes G. Synthesis 2016; 48: 379
- 16h Beisel T, Kirchner J, Kaehler T, Knauer J, Soltani Y, Manolikakes G. Org. Biomol. Chem. 2016; 14: 5525
- 17 Monomeric glyoxalates are prepared from the corresponding polymers by pyrolysis. The monomers are so reactive that they polymerize easily and react readily with water to generate the hydrated forms. Therefore, they have to be distilled just prior to use, after pyrolysis, and used under nonaqueous conditions.
- 18 Ethyl glyoxalate was obtained in the polymer form (50 wt% solution) in toluene. Toluene was removed prior to the initial experiments by applying vacuum (1 mbar) for 2 h.
- 19 For an excellent overview of the nucleophilicity of arenes as well as the reactivity of various other molecules, we recommend the database of Prof. H. Mayr (LMU Munich): http://www.cup.lmu.de/oc/mayr/reaktionsdatenbank/.
- 20a Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
- 20b Gopalaiah K. Chem. Rev. 2013; 113: 3248
- 20c Darwish M, Wills M. Catal. Sci. Technol. 2012; 2: 243
- 20d Fürstner A. Angew. Chem. Int. Ed. 2009; 48: 1364
- 20e Morris RH. Chem. Soc. Rev. 2009; 38: 2282
- 20f Bolm C. Nat. Chem. 2009; 1: 420
- 20g Bauer EB. Curr. Org. Chem. 2008; 12: 1341
- 20h Correa A, García Mancheno O, Bolm C. Chem. Soc. Rev. 2008; 37: 1108
- 20i Plietker B. Iron Catalysis in Organic Chemistry – Reactions and Applications. Wiley-VCH; Weinheim: 2008
- 20j Enthaler S, Junge K, Beller M. Angew. Chem. Int. Ed. 2008; 47: 3317
- 20k Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
- 21a Alt IT, Plietker B. Angew. Chem. Int. Ed. 2016; 55: 1519
- 21b Lin CH, Pursley D, Klein JE. M. N, Teske J, Allen JA, Rami F, Köhn A, Plietker B. Chem. Sci. 2015; 6: 7034
- 21c Heid B, Plietker B. Synthesis 2015; 48: 340
- 21d Kim JG, Son YH, Seo JW, Kang EJ. Eur. J. Org. Chem. 2015; 1781
- 21e Casitas A, Krause H, Goddard R, Fürstner A. Angew. Chem. Int. Ed. 2015; 54: 1521
- 21f Mottweiler J, Rinesch T, Besson C, Buendia J, Bolm C. Green Chem. 2015; 17: 5001
- 21g Lamers P, Priebbenow DL, Bolm C. Eur. J. Org. Chem. 2015; 5594
- 21h Xu T, Cheung CW, Hu X. Angew. Chem. Int. Ed. 2014; 53: 4910
- 21i Wang J, Frings M, Bolm C. Chem. Eur. J. 2014; 20: 966
- 21j Krahl MP, Kataeva O, Schmidt AW, Knölker H.-J. Eur. J. Org. Chem. 2013; 59
- 21k Wang J, Frings M, Bolm C. Angew. Chem. Int. Ed. 2013; 52: 8661
- 21l Fleischer S, Zhou S, Junge K, Beller M. Angew. Chem. Int. Ed. 2013; 52: 5120
- 21m Kuzmina OM, Steib AK, Markiewicz JT, Flubacher D, Knochel P. Angew. Chem. Int. Ed. 2013; 52: 4945
- 21n Sengoden M, Punniyamurthy T. Angew. Chem. Int. Ed. 2013; 52: 572
- 21o Gülak S, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2012; 51: 1357
- 21p Plietker B. Angew. Chem. Int. Ed. 2012; 51: 5351
- 22a Ollevier T. Org. Biomol. Chem. 2013; 11: 2740
- 22b Bothwell JM, Krabbe SW, Mohan RS. Chem. Soc. Rev. 2011; 40: 4649
- 22c Gaspard-Iloughmane H, Le Roux C. Eur. J. Org. Chem. 2004; 2517
- 23a Yoo JS, Laughlin TJ, Krob JJ, Mohan RS. Tetrahedron Lett. 2015; 56: 4060
- 23b Murai M, Origuchi K, Takai K. Org. Lett. 2014; 16: 3828
-
23c Nitsch D, Bach T. J. Org. Chem. 2014; 79: 6372
-
23d Nitsch D, Huber SM, Pöthig A, Narayanan A, Olah GA, Prakash GK. S, Bach T. J. Am. Chem. Soc. 2014; 136: 2851
- 23e Cacciuttolo B, Ondet P, Poulin-Martini S, Lemière G, Dunach E. Org. Chem. Front. 2014; 1: 765
- 23f Jaratjaroonphong J, Tuengpanya S, Ruengsangtongku S. J. Org. Chem. 2014; 80: 559
- 23g Kawai N, Abe R, Matsuda M, Uenishi J. J. Org. Chem. 2011; 76: 2102
- 23h Rueping M, Nachtsheim BJ, Sugiono E. Synlett 2010; 1549
- 23i Ollevier T, Li Z. Adv. Synth. Catal. 2009; 351: 3251
- 23j Kelly BD, Allen JM, Tundel RE, Lambert TH. Org. Lett. 2009; 11: 1381
- 23k Rubenbauer P, Herdtweck E, Strassner T, Bach T. Angew. Chem. Int. Ed. 2008; 47: 10106
- 23l Quin H, Yamagiwa N, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2007; 46: 409
- 23m Rueping M, Nachtsheim BJ, Ieawsuwan W. Adv. Synth. Catal. 2006; 348: 1033
- 23n Ollevier T, Nadeau E. J. Org. Chem. 2004; 69: 9292
- 24a Ferm VH, Carpenter SJ. Toxicol. Appl. Pharmacol. 1970; 16: 166
- 24b Gale TF. Teratology 1975; 11: 289
- 25a Dang TT, Boeck F, Hintermann L. J. Org. Chem. 2011; 76: 9353
- 25b Wabnitz TC, Yu J.-Q, Spencer JB. Chem. Eur. J. 2004; 10: 484
- 26 Summerer D, Chen S, Wu N, Deiters A, Chin JW, Schultz PG. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 9785
- 27 Competitive formation of the bis(heteroaryl)methane derivatives was observed in other reports; compare: ref. 23f and Soueidan M, Collin J, Gil R. Tetrahedron Lett. 2006; 47: 5467
- 28 As shown in our previous studies, only Bi(OTf)3 could catalyze reactions with less reactive aldehydes. Fe salts were completely inactive in these reactions, compare ref. 16b.
-
29a Shen J.-J, Zhu S.-F, Cai Y, Xu H, Xie X.-L, Zhou Q.-L. Angew. Chem. Int. Ed. 2014; 53: 13188
- 29b Li Z, Plancq B, Ollevier T. Chem. Eur. J. 2012; 18: 3144
- 30 Heravi MM, Zadsirjan V. Tetrahedron: Asymmetry 2013; 24: 1149
- 31 In this study, we focused on readily available (i.e., commercially available) salts.
- 32 The reactive N-acylimine species might be too short-lived under our reaction conditions to be detected by common NMR or IR methods.
- 33a For Bi(III)–arene complexes, see: Frank W, Reiland V, Reiß GJ. Angew. Chem. Int. Ed. 1998; 37: 2983
- 33b Frank W, Schneider J, Müller-Becker S. J. Chem. Soc., Chem. Commun. 1993; 799
- 34 Compare: Gandhi S, List B. Angew. Chem. Int. Ed. 2013; 52: 2573
- 35 Long JR. J. Chem. Health Safety 2002; 9: 12
- 36 Chau J, Zhang J, Ciulolini MA. Tetrahedron Lett. 2009; 50: 6163
- 37 Burgess EM.. Penton H. R. Jr. J. Org. Chem. 1974; 29: 2885
- 38 Fuson RC, Armstrong LJ, Chadwick DH, Kneisley JW, Rowland SP, Shenk WJ. Jr, Soper QF. J. Chem. Am. Soc. 1945; 67: 386
- 39 Meng Q, Sun Y, Ratovelomanana-Vidal Genêt JP, Zhang Z. J. Org. Chem. 2008; 73: 3842
For reviews on asymmetric arylglycine synthesis, see:
For recent examples, see:
For the iron-catalyzed addition of thiophenes to preformed glyoxalate imines, see:
For recent reviews, see:
For a recent review, see:
Atom economic:
Sustainable synthesis:
For reviews, see:
For selected recent examples of iron catalysis in organic synthesis, see:
For reviews, see:
For selected recent examples of bismuth catalysis in organic synthesis, see:
For the use of dbpy as a mechanistic probe to determine between Lewis and Brønsted acid catalysis, see:
For examples of asymmetric Bi- and Fe-catalyzed transformations, see: