Synlett 2016; 27(11): 1693-1698
DOI: 10.1055/s-0035-1561602
letter
© Georg Thieme Verlag Stuttgart · New York

Indium(III) Chloride Promoted Highly Efficient Tandem Rearrangement–α-Addition Strategy towards the Synthesis of α-Hydroxyamides

Kadari Lingaswamy
D-207, Discovery Laboratory, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India   Email: ylprapurna.iict@gov.in
,
Dumpala Mohan
D-207, Discovery Laboratory, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India   Email: ylprapurna.iict@gov.in
,
Palakodety Radha Krishna
D-207, Discovery Laboratory, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India   Email: ylprapurna.iict@gov.in
,
Y. Lakshmi Prapurna*
D-207, Discovery Laboratory, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India   Email: ylprapurna.iict@gov.in
› Author Affiliations
Further Information

Publication History

Received: 20 October 2015

Accepted after revision: 10 March 2016

Publication Date:
07 April 2016 (online)


Abstract

A new tandem process is reported that provides access to α-hydroxyamides from epoxides for the first time. Herein, we explore ­InCl3-mediated tandem rearrangement of epoxides to aldehydes and α-addition of TosMIC to in situ derived aldehydes. An unprecedented C–C bond-forming reaction is disclosed that features mild conditions, high yields, and shorter reaction times.

Supporting Information

 
  • References and Notes

    • 1a Konda Y, Onda M, Hirano A, Ömura S. Chem. Pharm. Bull. 1980; 28: 2987
    • 1b Suda H, Takita T, Aoyagi T, Umezawa H. J. Antibiot. 1976; 29: 100
    • 1c Yokoi K, Nagaoka K, Nakashima T. Chem. Pharm. Bull. 1986; 34: 4554
    • 1d Perry NB, Blunt JW, Munro MH. G. J. Am. Chem. Soc. 1988; 110: 4850
    • 2a Süssmuth R, Müller J, Von Döhren H, Molnár I. Nat. Prod. Rep. 2011; 28: 99
    • 2b Pelay-Gimeno M, Tulla-Puche J, Albericio F. Mar. Drugs 2013; 11: 1693
    • 2c Fukuda T, Arai M, Tomoda H, Ömura S. J. Antibiot. 2004; 57: 117
    • 2d Tomoda H, Nishida H, Huang X.-H, Masuma R, Kim YK, Ömura S. J. Antibiot. 1992; 45: 1207
    • 2e Shiomi K, Matsui R, Kakei A, Yamaguchi Y, Masuma R, Hatano H, Arai N, Isozaki M, Tanaka H, Kobayashi S, Turberg A, Ömura S. J. Antibiot. 2010; 63: 77
    • 3a Ahmad S, Ashfaq A, Alam M, Bisacchi GS, Chen P, Cheng PT. W, Greytok JA, Hermsmeier MA, Lin P.-F, Lis KA, Merchant Z, Mitt T, Skoog M, Spergel SH, Tino JA, Vite GD, Colonno RJ, Zahler R, Barrish JC. Bioorg. Med. Chem. Lett. 1995; 5: 1729
    • 3b Sheppard GS, Wang J, Kawai M, BaMaung NY, Craig RA, Erickson SA, Lynch L, Patel J, Yang F, Searle XB, Lou P, Park C, Kim KH, Henkin J, Lesniewski R. Bioorg. Med. Chem. Lett. 2004; 14: 865
    • 3c Schenck HA, Lenkowski PW, Mukherjee IC, Kob SH, Stables JP, Patel MK, Brown ML. Bioorg. Med. Chem. 2004; 12: 979
    • 3d Kuduk SD, Chang RK, DiPardo RM, Di Marco CN, Murphy KL, Ransom RW, Reiss DR, Tang C, Prueksaritanont T, Pettibone DJ, Bock MG. Bioorg. Med. Chem. Lett. 2008; 18: 5107

      Catalytic reactions:
    • 4a Soeta T, Kojima Y, Ukaji Y, Inomata K. Tetrahedron Lett. 2011; 52: 2557
    • 4b Alcaide B, Almendros P, Aragoncillo C, Callejo R, Ruiz MP. J. Org. Chem. 2013; 78: 10154
    • 5a Lumma WC. J. Org. Chem. 1981; 46: 3668
    • 5b Mullen LB, Sutherland JD. Angew. Chem. Int. Ed. 2007; 46: 8063
    • 5c He P, Wu J, Nie Y.-B, Ding M.-W. Tetrahedron 2009; 65: 8563
    • 6a Kumar JS, Jonnalagadda SC, Mereddy VR. Tetrahedron Lett. 2010; 51: 779
    • 6b Ramazani A, Mahyari A, Lashgari H, Sleopokura K, Lis T. Helv. Chim. Acta 2011; 94: 611
    • 6c Sela T, Vigalok A. Adv. Synth. Catal. 2012; 354: 2407
    • 6d Bayat M, Nasri S, Hosseini H, Hassanzadeh F. Monatsh. Chem. 2012; 143: 801
    • 6e Yamada T, Hirose T, Ömura S, Sunazuka T. Eur. J. Org. Chem. 2015; 296
    • 7a Passerini M. Gazz. Chim. Ital. 1921; 51: 126
    • 7b Passerini M, Ragni G. Gazz. Chim. Ital. 1931; 61: 964
    • 8a Ugi I, Meyr R, Fetzer U, Steinbrückner C. Angew. Chem. 1959; 71: 386
    • 8b Ugi I, Steinbrückner C. Angew. Chem. 1960; 72: 267

      BF3·OEt2 or AlCl3 catalysis:
    • 9a Müller E, Zeeh B. Liebigs Ann. Chem. 1966; 696: 72

    • BF3·OEt2 catalysis:
    • 9b Müller E, Zeeh B. Liebigs Ann. Chem. 1968; 715: 47
    • 9c Saegusa T, Taka-Ishi N, Fujii H. Tetrahedron 1968; 24: 3795

    • In(OTf)3-catalyzed direct alkylative Passerini reaction of alcohols:
    • 9d Yanai H, Oguchi T, Taguchi T. J. Org. Chem. 2009; 74: 3927

      TiCl4-promoted Passerini reaction:
    • 10a Schiess M, Seebach D. Helv. Chim. Acta 1983; 66: 1618
    • 10b Seebach D, Adam G, Gees T, Schiess M, Weigand W. Chem. Ber. 1988; 121: 507
    • 10c Carofiglio T, Cozzi PG, Floriani C, Chiesi-Villa A, Rizzoli C. Organometallics 1993; 12: 2726

      Catalytic asymmetric reaction:
    • 11a Denmark SE, Fan Y. J. Am. Chem. Soc. 2003; 125: 7825
    • 11b Denmark SE, Fan Y. J. Org. Chem. 2005; 70: 9667
    • 12a Van Leusen D, Van Leusen AM. Org. React. 2001; 57: 417
    • 12b Ramana Reddy VV. Synlett 2005; 363
    • 12c Kaur T, Wadhwa P, Sharma A. RSC Adv. 2011; 1: 100
    • 13a Radha Krishna P, Dayaker G, Narasimha Reddy PV. Tetrahedron Lett. 2006; 47: 5977
    • 13b Radha Krishna P, Rao LK. Synlett 2007; 83
    • 13c Radha Krishna P, Ramana Reddy VV, Sharma GV. M. Synlett 2003; 1619
    • 13d Sharma GV. M, Radha Krishna P. Curr. Org. Chem. 2004; 8: 1187
    • 13e Radha Krishna P, Ramana Reddy VV, Srinivas R. Tetrahedron 2007; 63: 9871
    • 14a Radha Krishna P, Raja Sekhar E, Prapurna YL. Tetrahedron Lett. 2007; 48: 9048
    • 14b Radha Krishna P, Raja Sekhar E. Adv. Synth. Catal. 2008; 350: 2871
    • 14c Radha Krishna P, Lakshmi Prapurna Y. Synlett 2009; 2613
    • 15a Nielsen DK, Doyle AG. Angew. Chem. Int. Ed. 2011; 50: 6056
    • 15b Jiang N, Hu QY, Reid CS, Lu YF, Li CJ. Chem. Commun. 2003; 2318
    • 15c Banerjee M, Roy UK. P, Sinha PS. J. Organomet. Chem. 2005; 690: 1422
    • 16a Picione J, Mahmood SJ, Gill A, Hilliard M, Hossain MM. Tetrahedron Lett. 1998; 39: 2681
    • 16b Ranu BC, Jana U. J. Org. Chem. 1998; 63: 8212
    • 16c Suda K, Nakajima S.-I, Satoh Y, Takanami T. Chem. Commun. 2009; 1255
    • 17a As suggested by one of the reviewers, a control experiment was conducted as evidence to the aldehyde formation from epoxide.
    • 17b The aldehyde was identified by comparison of its spectral data as reported in: Chowdhury AD, Ray R, Lahiri GK. Chem. Commun. 2012; 48: 5497
  • 18 Lewis JB, Hedrick GW. J. Org. Chem. 1965; 30: 4271
  • 19 Tumanov VV, Tishkov AA, Mayr H. Angew. Chem. Int. Ed. 2007; 46: 3563
  • 20 General Experimental Procedure (Table 3, Entry 1) A solution of styrene oxide (120 mg, 1.0 mmol), TosMIC (195 mg, 1.0 mmol), and InCl3 (110 mg, 0.5 mmol) in THF–H2O (9:1, 2 mL) was stirred at ambient temperature until completion (TLC). The resulting solution was partitioned between an equimolar ratio of Et2O (2 × 20 mL), the combined organic layers were washed with brine (1 × 20 mL), dried (Na2SO4), evaporated under vacuum, and the residue thus obtained was purified by column chromatography (silica gel 60–120 mesh, EtOAc–n-hexane, 3.0:7.0) to afford 2a. 2-Hydroxy-3-phenyl-N-(tosylmethyl)propanamide (2a) Yellow solid (290 mg, 90% yield), mp 125–127 °C. 1H NMR (500 MHz, CDCl3): δ = 7.78 (d, J = 8.2 Hz, 2 H), 7.56 (br s, 1 H, NH), 7.39–7.15 (m, 7 H), 4.65 (d, J = 6.9 Hz, 1 H), 4.19 (dd, J = 9.4, 3.4 Hz, 1 H), 3.04 (dd, J = 13.9, 3.0 Hz, 1 H), 2.62 (dd, J = 14.0, 9.4 Hz, 1 H), 2.44 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 172.6, 145.5, 136.6, 133.7, 129.9, 129.4, 128.9, 128.7, 127.1, 72.8, 59.9, 40.5, 21.7. ESI-MS: m/z = 334 [M + H]+. HRMS: m/z calcd for C17H19O4NNaS [M + Na]+: 356.0927; found: 356.09226.