Synlett 2016; 27(12): 1765-1774
DOI: 10.1055/s-0035-1561617
account
© Georg Thieme Verlag Stuttgart · New York

Aromatic Metamorphosis of Dibenzothiophenes

Hideki Yorimitsu*
a   Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
b   Institute for Molecular Science, Okazaki, Aichi 444-8787, Japan
,
Dhananjayan Vasu
a   Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
,
M. Bhanuchandra
a   Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
,
Kei Murakami
a   Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
c   The Hakubi Center for Advanced Research, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan   Email: yori@kuchem.kyoto-u.ac.jp
,
Atsuhiro Osuka
a   Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
› Author Affiliations
Further Information

Publication History

Received: 12 February 2016

Accepted: 11 March 2016

Publication Date:
18 May 2016 (online)


Abstract

In general, aromatic cores are stable owing to their resonance energies. Different from facile peripheral modifications of aromatic cores, transforming an aromatic core into a different skeleton is ambitious and has attracted only little attention as a general synthetic method. This personal account shows our journey to inventing transformations of dibenzothiophenes into triphenylenes, carbazoles, and spirocyclic diarylfluorenes and to establishing ‘aromatic metamorphosis’ as a useful and game-changing strategy in organic synthesis.

1 Introduction

2 Aromatic Metamorphosis

3 From Dibenzothiophenes to Triphenylenes

4 From Dibenzothiophenes to Carbazoles

5 From Dibenzothiophenes to Spirocyclic Tetraarylmethanes

6 Conclusion

 
  • References

  • 1 Current address: Department of Chemistry, Center for Catalytic Hydrocarbon Functionalizations Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
  • 2 Current address: Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
  • 3 Current address: Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Rajasthan 305817, India.
    • 4a Yorimitsu H. J. Synth. Org. Chem., Jpn. 2013; 71: 341
    • 4b Sato A, Yorimitsu H, Oshima K. Synlett 2009; 28 ; and references cited therein
    • 5a Yoshida S, Yorimitsu H, Oshima K. Org. Lett. 2007; 9: 5573
    • 5b Yoshida S, Yorimitsu H, Oshima K. Chem. Lett. 2008; 37: 786
    • 5c Yoshida S, Yorimitsu H, Oshima K. Org. Lett. 2009; 11: 2185
    • 5d Kobatake T, Fujino D, Yoshida S, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2010; 49: 2340
    • 5e Kobatake T, Yoshida S, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2010; 132: 11838
    • 5f Ookubo Y, Wakamiya A, Yorimitsu H, Osuka A. Chem. Eur. J. 2012; 17: 12690
    • 5g Murakami K, Imoto J, Matsubara H, Yoshida S, Yorimitsu H, Oshima K. Chem. Eur. J. 2013; 19: 5625
    • 5h Murakami K, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2014; 53: 7510
    • 5i Murakami K, Yorimitsu H, Osuka A. Bull. Chem. Soc. Jpn. 2014; 87: 1349
    • 5j Baralle A, Otsuka S, Guérin V, Murakami K, Yorimitsu H, Osuka A. Synlett 2015; 26: 327
    • 6a Otsuka S, Fujino D, Murakami K, Yorimitsu H, Osuka A. Chem. Eur. J. 2014; 20: 13146
    • 6b Otsuka S, Yorimitsu H, Osuka A. Chem. Eur. J. 2015; 21: 14703
    • 7a Sugahara T, Murakami K, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2014; 53: 9329
    • 7b Gao K, Murakami K, Yorimitsu H, Osuka A. Eur. J. Org. Chem. 2015; 2678
  • 8 Gao K, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2016; 55: 4573
  • 9 Osuka A, Tsurumaki E, Tanaka T. Bull. Chem. Soc. Jpn. 2011; 84: 679
  • 10 Hayashi S, Inokuma Y, Easwaramoorthi S, Kim KS, Kim D, Osuka A. Angew. Chem. Int. Ed. 2010; 49: 321
  • 11 Nagai M, Urimoto H, Uetake K, Sakikawa N, Gonzalez RD. Bull. Chem. Soc. Jpn. 1989; 62: 557
    • 12a Song C. Catal. Today 2003; 86: 211
    • 12b Babich IV, Moulijn JA. Fuel 2003; 82: 607
    • 12c Yang RT, Hernández-Maldonado A, Yang FH. Science 2003; 301: 79

      For very recent selected examples involving five-membered heteroarenes, see:
    • 13a Criado A, Vilas-Varela M, Cobas A, Pérez D, Peña D, Guitián E. J. Org. Chem. 2013; 78: 12637
    • 13b Ding X, Nguyen ST, Williams JD, Peet NP. Tetrahedron Lett. 2014; 55: 7002
    • 13c Suzuki S, Segawa Y, Itami K, Yamaguchi J. Nat. Chem. 2015; 7: 227

      For reviews on the Diels–Alder reactions of azines, see:
    • 13a Boger DL. Chem. Rev. 1986; 86: 781
    • 13b Prokhorov AM, Kozhevnikov DN. Chem. Heterocycl. Compd. 2012; 48: 1153
    • 16a Osuka A, Saito S. Chem. Commun. 2011; 47: 4330
    • 16b Saito S, Osuka A. Angew. Chem. Int. Ed. 2011; 50: 4342
  • 17 Tanaka Y, Mori H, Koide T, Yorimitsu H, Aratani N, Osuka A. Angew. Chem. Int. Ed. 2011; 50: 11460
    • 18a Murata M, Murata Y, Komatsu K. Chem. Commun. (Cambridge) 2008; 6083
    • 18b Komatsu K, Murata M, Murata Y. Science 2005; 307: 238
    • 18c Kurotobi K, Murata Y. Science 2011; 333: 613
    • 18d Zhang R, Murata M, Aharen T, Wakamiya A, Shimoaka T, Hasegawa T, Murata Y. Nat. Chem. 2016; 8: 435
    • 19a Pérez D, Guitián E. Chem. Soc. Rev. 2004; 33: 274
    • 19b Pérez D, Peña D, Guitián E. Eur. J. Org. Chem. 2013; 5981
  • 20 Vasu D, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2015; 54: 7162
    • 21a Srogl J, Allred GD, Liebeskind LS. J. Am. Chem. Soc. 1997; 119: 12376
    • 21b Zhang S, Marshall D, Liebeskind LS. J. Org. Chem. 1999; 64: 2796
    • 21c Zapf A. Angew. Chem. Int. Ed. 2003; 42: 5394
  • 22 Zhu F, Wang Z.-X. Org. Lett. 2015; 17: 1601

    • For pioneering and more recent work about NaBAr4 reagents in palladium-catalyzed cross-coupling under base-free conditions, see:
    • 23a Kurosawa H, Ogoshi S, Kawasaki Y, Murai S, Miyoshi M, Ikeda I. J. Am. Chem. Soc. 1990; 112: 2813
    • 23b Legros J.-Y, Flaud J.-C. Tetrahedron Lett. 1990; 31: 7453
    • 23c Catellani M, Chiusoli GP, Vilma F. Gazz. Chim. Ital. 1990; 120: 779
    • 23d Yamada YM. A, Watanabe T, Beppu T, Fukuyama N, Torii K, Uozumi Y. Chem. Eur. J. 2010; 16: 11311
    • 23e Yan J, Zhou Z, Zhu M. Synth. Commun. 2006; 36: 1495
    • 24a Haryono A, Miyatake K, Natori J, Tsuchida E. Macromolecules 1999; 32: 3146
    • 24b Sirringhaus H, Friend RH, Wang C, Leuninger J, Müllen K. J. Mater. Chem. 1999; 9: 2095
    • 24c Iwasaki T, Kohinata Y, Nishide H. Org. Lett. 2005; 7: 755
    • 24d Zhang S, Qiao X, Chen Y, Wang Y, Edkins RM, Liu Z, Li H, Fang Q. Org. Lett. 2014; 16: 342
  • 24 Bhanuchandra M, Murakami K, Vasu D, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2015; 54: 10234
    • 26a Bradley W. J. Chem. Soc. 1938; 458
    • 26b Köbrich G. Chem. Ber. 1959; 92: 2981
    • 27a Bruna PJ, Grein F. J. Phys. Chem. A 2012; 116: 10229
    • 27b Morales DP, Taylor AS, Framer SC. Molecules 2010; 15: 1265
  • 28 Nandakumar M, Karunakaran J, Mohanakrishnan AK. Org. Lett. 2014; 16: 3068
  • 29 Bhanuchandra M, Yorimitsu H, Osuka A. Org. Lett. 2016; 18: 384

    • For representative reviews, see:
    • 30a Xie L.-H, Liang J, Song J, Yin C.-R, Huang W. Curr. Org. Chem. 2010; 14: 2169
    • 30b Sun M, Xu R, Xie L, Wei Y, Huang W. Chin. J. Chem. 2015; 33: 815
    • 31a Bischoff F, Adkins H. J. Am. Chem. Soc. 1923; 45: 1030
    • 31b Clarkson RG, Gomberg M. J. Am. Chem. Soc. 1930; 52: 2881
    • 31c Xie L.-H, Liu F, Tang C, Hou X.-Y, Hua Y.-R, Fan Q.-L, Huang W. Org. Lett. 2006; 8: 2787