RSS-Feed abonnieren
DOI: 10.1055/s-0035-1561620
Ex Situ Enantioconvergent Approaches for the Effective Use of Undesired Isomers: Stereochemical Convergence of a Substrate with Multiple Chiral Centers and Recycling of a Decarboxylated Byproduct
Publikationsverlauf
Received: 05. Januar 2016
Accepted after revision: 16. März 2016
Publikationsdatum:
11. Mai 2016 (online)
Abstract
Enzyme-mediated kinetic resolution of racemic starting materials is a valuable and convenient tool for the preparation of enantioenriched compounds. To overcome the 50% yield limitation in conventional kinetic resolution, diverse enantioconvergent approaches have been developed. After a brief introduction of the recently developed ‘in situ deracemization’ and ‘ex situ enantioconvergent approach’, we present unique ex situ enantioconvergent approaches to solve two difficult cases: 1) In the synthesis of ethyl (3R,4S,5R)-shikimate, a diastereomeric (3R*,4S*,5S*)-substrate containing multiple chiral centers was applied in an enzyme-catalyzed acetylation, and both the enzyme-catalyzed product and unreacted substrate converted into ethyl (3R,4S,5R)-shikimate via partial stereochemical inversions. 2) The enzyme-catalyzed kinetic resolution of a ranirestat precursor and the regeneration of the racemic substrate from a decarboxylated byproduct are described in detail. Since in the latter study, the products spontaneously decarboxylated after hydrolysis of the ester groups, the in situ regeneration of the racemic substrates was of significant difficulty. We successfully installed an ethoxycarbonyl group on the byproduct by ex situ sequential derivatization to overcome the 50% yield limitation.
1 Short Review of Enantioconvergent Approaches
2 Resolution of a Substrate with Multiple Chiral Centers
3 Resolution Based on Enzyme-Mediated Hydrolysis Accompanied by Nonenzymatic C–C Bond Cleavage
4 Conclusions
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561620.
- Supporting Information
-
References
- 1 Stecher H, Faber K. Synthesis 1997; 1
- 2 Azerad R, Buisson D. Curr. Opin. Biotechnol. 2000; 11: 565
- 3 Faber K. Chem. Eur. J. 2001; 7: 5004
- 4 May O, Verseck S, Bommarius A, Drauz K. Org. Process Res. Dev. 2002; 6: 452
- 5 Pálmies O, Bäckvall J.-E. Chem. Rev. 2003; 103: 3247
- 6 Burton SG, Dorrington RA. Tetrahedron: Asymmetry 2004; 15: 2737
- 7 Turner NJ. Curr. Opin. Chem. Biol. 2004; 8: 114
- 8 Gruber CC, Lavandera I, Faber K, Kroutil W. Adv. Synth. Catal. 2006; 348: 1789
- 9 Ahn Y, Ko S.-B, Kim M.-J, Park J. Coord. Chem. Rev. 2008; 252: 647
- 10 Kamal A, Azhar MM, Krishnaji T, Malik MS, Azeeza S. Coord. Chem. Rev. 2008; 252: 569
- 11 Pellissier H. Tetrahedron 2008; 64: 1563
- 12 Holt J, Hanefeld U. Curr. Org. Synth. 2009; 6: 15
- 13 Lee JH, Han K, Kim M.-J, Park J. Eur. J. Org. Chem. 2010; 999
- 14 Ahmed M, Kelly T, Ghanem A. Tetrahedron 2012; 68: 6781
- 15 Marcos R, Martín-Matute B. Isr. J. Chem. 2012; 52: 639
- 16 Rachwalski M, Vermue N, Rutjes FP. J. T. Chem. Soc. Rev. 2013; 42: 9268
- 17 Akai S. Chem. Lett. 2014; 43: 746
- 18 de Miranda AS, Miranda LS. M, de Souza RO. M. A. Biotechnol. Adv. 2015; 33: 372
- 19 Verho O, Bäckvall J.-E. J. Am. Chem. Soc. 2015; 137: 3996
- 20 Schober M, Faber K. Trends Biotechnol. 2013; 31: 468
- 21 Yamashita Y, Hanaya K, Sugai T, Mizushima T, Shoji M. Tetrahedron 2013; 69: 6527
- 22a Node M, Nakamura S, Nakamura D, Katoh T, Nishide K. Tetrahedron Lett. 1999; 40: 5357
- 22b Katoh T, Kakiya K, Nakai T, Nakamura S, Nishide K, Node M. Tetrahedron: Asymmetry 2002; 13: 2351
- 23 Laronde JJ, Bergbrieter DE, Wong C.-H. J. Org. Chem. 1988; 53: 2323
- 24 Westerman B, Scharmann HG, Kortman I. Tetrahedron: Asymmetry 1993; 4: 2119
- 25a Negoro T, Murata M, Ueda S, Fujitani B, Ono Y, Kuromiya A, Komiya M, Suzuki K, Matsumoto J. J. Med. Chem. 1998; 41: 4118
- 25b Bril V, Buchanan R. Diabetes Care 2004; 27: 2369
- 25c Bril V, Buchanan R. Diabetes Care 2006; 29: 68
- 25d Matsumoto T, Ono Y, Kuromiya A, Toyosawa K, Ueda Y, Bril V. J. Pharmacol. Sci. 2008; 107: 340
- 25e Matsumoto T, Ono Y, Kurono M, Kuromiya A, Nakamura K, Bril V. J. Pharmacol. Sci. 2008; 107: 231
- 25f Ota A, Kakehashi A, Toyoda F, Kinoshita N, Shinmura M, Takano H, Obata H, Matsumoto T, Tsuji J, Dobashi Y, Fujimoto WY, Kawakami M, Kanazawa Y. J. Diabetes Res. 2013; 2013: 1
- 26 Mashiko T, Kumagai N, Shibasaki M. Org. Lett. 2008; 10: 2725
- 27 Seki M, Kawase Y. WO 2009/051216 A1, 2009
- 28 Kudo Y, Yamada O. WO 2008/035735 A1, 2008
- 29 Maffioli SI, Marzorati E, Marazzi A. Org. Lett. 2005; 7: 5237
- 30 Chikusa Y, Hirayama Y, Ikunaka M, Inoue T, Kamiyama S, Moriwaki M, Nishimoto Y, Nomoto F, Ogawa K, Ohno T, Otsuka K, Sakota K, Shirasaka N, Uzura A, Uzura K. Org. Process Res. Dev. 2003; 7: 289
- 31 Ballatore C, Brunden KR, Piscitelli F, Piscitelli F, James MJ, Crowe A, Yao Y, Hyde E, Trojanowski JQ, Lee VM.-Y, Smith III AB. J. Med. Chem. 2010; 53: 3739
- 32 Crider AM, Sylvestri SC, Tschappat KD, Dick RM, Leader WG. J. Heterocycl. Chem. 1988; 25: 1407
- 33 Monguchi Y, Fujita Y, Endo K, Takao S, Yoshimura M, Takagi Y, Maegawa T, Sajiki H. Chem. Eur. J. 2009; 15: 834
- 34 Monguchi Y, Ichikawa T, Nozaki K, Kihara K, Yamada Y, Miyake Y, Sawama Y, Sajiki H. Tetrahedron 2015; 71: 6499
- 35 Monguchi Y, Kume A, Hattori K, Maegawa T, Sajiki H. Tetrahedron 2006; 62: 7926