Synthesis 2016; 48(21): 3773-3784
DOI: 10.1055/s-0035-1561660
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Hydrolysis of 4-Chloro-PyMTA and 4-Iodo-PyMTA Esters and Their Oxidative Degradation with Cu(I/II) and Oxygen

Mian Qi
Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany   Email: godt@uni-bielefeld.de
,
Miriam Hülsmann
Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany   Email: godt@uni-bielefeld.de
,
Adelheid Godt*
Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany   Email: godt@uni-bielefeld.de
› Author Affiliations
Further Information

Publication History

Received: 03 March 2016

Accepted after revision: 02 May 2016

Publication Date:
29 June 2016 (online)


Abstract

We disclose the syntheses of ethyl and tert-butyl esters of 4-chloro-PyMTA and 4-iodo-PyMTA from the commercially available chelidamic acid monohydrate in 39–67% overall yield. Additionally, ester hydrolyses with aqueous NaOH (ethyl esters) or trifluoroacetic acid (tert-butyl esters) are reported. The resulting materials contain 4-halo-PyMTA in mixture with partially deprotonated or partially protonated 4-halo-PyMTA. The ligand content expressed as the content of the common structural motifs of the present species, namely [PyMTA – 4 H+]4– (basic hydrolysis) and PyMTA (acidic hydrolysis), was determined to be 90–94 wt % by 1H NMR spectroscopy using maleic acid as an internal standard. The tert-butyl esters were easily hydrolyzed with aqueous alkali hydroxide, with a decreasing rate in the series NaOH, KOH, LiOH. This finding indicates a Lewis acid assisted ester cleavage with the Na+ ion fitting best to the multidentate ligand. Unexpectedly, PyMTA esters are incompatible with Cu(I/II) salts in the presence of oxygen. Under these conditions, one of the two aminomethyl groups is converted into a formyl group. This reaction not only limits the application of Cu(I/II)-catalyzed reactions but also necessitates trapping of any copper ions (e.g., with a metal ion scavenger) before the material is exposed to oxygen.

Supporting Information

 
  • References

  • 1 Gouin SG, Roger M, Leygue N, Deniaud D, Julienne K, Benoist E, Picard C, Kovensky J, Galaup C. Bioorg. Med. Chem. Lett. 2012; 22: 2684
  • 2 Bonnet CS, Pellegatti L, Buron F, Shade CM, Villette S, Kubicek V, Guillaumet G, Suzenet F, Petoud S, Toth E. Chem. Commun. 2010; 46: 124
  • 3 Hyppänen I, Soukka T, Kankare J. J. Phys. Chem. A 2010; 114: 7856
  • 4 Roy BC, Santos M, Mallik S, Campiglia AD. J. Org. Chem. 2003; 68: 3999
  • 5 Karşılayan H, Hemmilä I, Takalo H, Toivonen A, Pettersson K, Lövgren T, Mukkala V.-M. Bioconjugate Chem. 1997; 8: 71
  • 6 Latva M, Takalo H, Mukkala V.-M, Matachescu C, Rodríguez-Ubis JC, Kankare J. J. Lumin. 1997; 75: 149
  • 7 Takalo H, Hemmilä I, Sutela T, Latva M. Helv. Chim. Acta 1996; 79: 789
  • 8 Mikola H, Takalo H, Hemmilä I. Bioconjugate Chem. 1995; 6: 235
  • 9 Takalo H, Hänninen E, Kankare J. J. Alloys Compd. 1995; 225: 511
  • 10 Takalo H, Mukkala V.-M, Mikola H, Liitti P, Hemmilä I. Bioconjugate Chem. 1994; 5: 278
  • 11 Mukkala V.-M, Sund C, Kwiatkowski M, Pasanen P, Högberg M, Kankare J, Takalo H. Helv. Chim. Acta 1992; 75: 1621
  • 12 Pellegatti L, Zhang J, Drahos B, Villette S, Suzenet F, Guillaumet G, Petoud S, Toth E. Chem. Commun. 2008; 6591
  • 13 Bonnet CS, Buron F, Caillé F, Shade CM, Drahoš B, Pellegatti L, Zhang J, Villette S, Helm L, Pichon C, Suzenet F, Petoud S, Tóth É. Chem. Eur. J. 2012; 18: 1419
  • 14 Dalaloyan A, Qi M, Ruthstein S, Vega S, Godt A, Feintuch A, Goldfarb D. Phys. Chem. Chem. Phys. 2015; 17: 18464
  • 15 Doll A, Qi M, Pribitzer S, Wili N, Yulikov M, Godt A, Jeschke G. Phys. Chem. Chem. Phys. 2015; 17: 7334
  • 16 Qi M, Groß A, Jeschke G, Godt A, Drescher M. J. Am. Chem. Soc. 2014; 136: 15366
  • 17 Razzaghi S, Qi M, Nalepa AI, Godt A, Jeschke G, Savitsky A, Yulikov M. J. Phys. Chem. Lett. 2014; 5: 3970
  • 18 Raitsimring AM, Gunanathan C, Potapov A, Efremenko I, Martin JM. L, Milstein D, Goldfarb D. J. Am. Chem. Soc. 2007; 129: 14138
  • 19 Boulay A, Deraeve C, Vander Elst L, Leygue N, Maury O, Laurent S, Muller RN, Mestre-Voegtlé B, Picard C. Inorg. Chem. 2015; 54: 1414
  • 20 Pais A, Gunanathan C, Margalit R, Eti BI, Yosepovich A, Milstein D, Degani H. Cancer Res. 2011; 71: 7387
  • 21 Gunanathan C, Pais A, Furman-Haran E, Seger D, Eyal E, Mukhopadhyay S, Ben-David Y, Leitus G, Cohen H, Vilan A, Degani H, Milstein D. Bioconjugate Chem. 2007; 18: 1361
  • 22 Yang Y, Wang J.-T, Pei Y.-Y, Su X.-C. Chem. Commun. 2015; 51: 2824
  • 23 Yang Y, Li Q.-F, Cao C, Huang F, Su X.-C. Chem. Eur. J. 2013; 19: 1097
  • 24 Chellquist EM, Searle R. J. Pharm. Biomed. Anal. 1993; 11: 985
  • 25 Kopra K, Shweta Martikkala E, Hänninen P, Petäjä-Repo U, Härmä H. Analyst 2013; 138: 4907
  • 26 Martikkala E, Lehmusto M, Lilja M, Rozwandowicz-Jansen A, Lunden J, Tomohiro T, Hänninen P, Petäjä-Repo U, Härmä H. Anal. Biochem. 2009; 392: 103
  • 27 Candelon N, Hadade ND, Matache M, Canet J.-L, Cisnetti F, Funeriu DP, Nauton L, Gautier A. Chem. Commun. 2013; 49: 9206
  • 28 Pihlasalo S, Kulmala A, Rozwandowicz-Jansen A, Hänninen P, Härmä H. Anal. Chem. 2012; 84: 1386
  • 29 Hurskainen P. J. Alloys Compd. 1995; 225: 489
  • 30 Meier RJ, Simbürger JM. B, Soukka T, Schäferling M. Chem. Commun. 2015; 51: 6145
  • 31 Vuojola J, Hyppänen I, Nummela M, Kankare J, Soukka T. J. Phys. Chem. B 2011; 115: 13685
  • 32 Härmä H, Suhonen R, Kololuoma T, Kärkkäinen A, Hara M, Hänninen P. Appl. Surf. Sci. 2009; 255: 6529
  • 33 Kokko L, Lövgren T, Soukka T. Anal. Chim. Acta 2007; 585: 17
  • 34 Härmä H, Soukka T, Shavel A, Gaponik N, Weller H. Anal. Chim. Acta 2007; 604: 177
  • 35 Härmä H, Dähne L, Pihlasalo S, Suojanen J, Peltonen J, Hänninen P. Anal. Chem. 2008; 80: 9781
  • 36 Wang Q, Nchimi Nono K, Syrjänpää M, Charbonnière LJ, Hovinen J, Härmä H. Inorg. Chem. 2013; 52: 8461
  • 37 von Lode P, Rosenberg J, Pettersson K, Takalo H. Anal. Chem. 2003; 75: 3193
  • 38 Aguilar-Caballos MP, Härmä H, Tuomola M, Lövgren T, Gómez-Hens A. Anal. Chim. Acta 2002; 460: 271
  • 39 Ylikoski A, Hellman J, Matikainen T, Käkönen S.-M, Karp M, Väänänen HK, Lövgren T, Pettersson K. J. Bone Miner. Res. 1998; 13: 1183
  • 40 Ollikka P, Ylikoski A, Kaatrasalo A, Harvala H, Hakala H, Hovinen J. Bioconjugate Chem. 2008; 19: 1269
  • 41 Kwiatkowski M, Samiotaki M, Lamminmäki U, Mukkala V.-M, Landegren U. Nucleic Acids Res. 1994; 22: 2604
  • 42 Hakala H, Ollikka P, Degerholm J, Hovinen J. Tetrahedron 2002; 58: 8771
  • 43 Takalo H, Hänninen E, Kankare J. Helv. Chim. Acta 1993; 76: 877
  • 44 Takalo H, Hänninen E, Kankare J. Acta Chem. Scand., Ser. B 1988; 42: 662
  • 45 Hänninen E, Takalo H, Kankare J. Acta Chem. Scand., Ser. B 1988; 42: 614
  • 46 Takalo H, Pasanen P, Kankare J. Acta Chem. Scand., Ser. B 1988; 42: 373
  • 47 Smith MB, March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure . 6th ed. Wiley-Interscience; Hoboken, NJ: 2007: 869
  • 48 Stille JK, Lau KS. Y. Acc. Chem. Res. 1977; 10: 434
  • 49 Qi M, Hülsmann M, Godt A. J. Org. Chem. 2016; 81: 2549
  • 50 Hasegawa M. Pharm. Bull. 1953; 1: 293
  • 51 Koenigs E, Jaeschke W. Ber. Dtsch. Chem. Ges. 1921; 54: 1351
  • 52 Graf R. J. Prakt. Chem. 1937; 148: 13
  • 53 Picot A, Feuvrie C, Barsu C, Malvolti F, Le Guennic B, Le Bozec H, Andraud C, Toupet L, Maury O. Tetrahedron 2008; 64: 399
  • 54 Kupai J, Huszth P, Székely K, Tóth T, Párkányi L. ARKIVOC 2011; (ix): 77
  • 55 Hamada Y, Suzuki K, Nakanishi T, Sarma D, Ohta H, Yamaguchi R, Yamasaki M, Hidaka K, Ishiura S, Kiso Y. Bioorg. Med. Chem. Lett. 2014; 24: 618
  • 56 Müller S, Sanders DA, Di Antonio M, Matsis S, Riou J.-F, Rodriguez R, Balasubramanian S. Org. Biomol. Chem. 2012; 10: 6537
  • 57 Bourdolle A, Allali M, Mulatier J.-C, Le Guennic B, Zwier JM, Baldeck PL, Bünzli J.-CG, Andraud C, Lamarque L, Maury O. Inorg. Chem. 2011; 50: 4987
  • 58 Hamada Y, Ohta H, Miyamoto N, Sarma D, Hamada T, Nakanishi T, Yamasaki M, Yamani A, Ishiura S, Kiso Y. Bioorg. Med. Chem. Lett. 2009; 19: 2435
  • 59 George MR, Golden CA, Grossel MC, Curry RJ. Inorg. Chem. 2006; 45: 1739
  • 60 Chessa G, Canovese L, Visentin F, Santo C, Seraglia R. Tetrahedron 2005; 61: 1755
  • 61 Bhattacharya S, Snehalatha K, Kumar VP. J. Org. Chem. 2003; 68: 2741
  • 62 Kurosaki H, Sharma RK, Aoki S, Inoue T, Okamoto Y, Sugiura Y, Doi M, Ishida T, Otsuka M, Goto M. J. Chem. Soc., Dalton Trans. 2001; 441
  • 63 Bhattacharya S, Snehalatha K, George SK. J. Org. Chem. 1998; 63: 27
  • 64 Lüning U, Baumstark R, Peters K, von Schnering HG. Liebigs Ann. Chem. 1990; 129
  • 65 Sugano Y, Kittaka A, Otsuka M, Ohno M, Sugiura Y, Umezawa H. Tetrahedron Lett. 1986; 27: 3635
  • 66 Markees DG, Kidder GW. J. Am. Chem. Soc. 1956; 78: 4130
  • 67 Nakamura T, Mizukami S, Tanaka M, Kikuchi K. Chem. Asian J. 2013; 8: 2685
  • 68 Bradshaw JS, Huszthy P, Wang T, Zhu C, Nazarenko AY, Izatt RM. Supramol. Chem. 1993; 1: 267
  • 69 Lüning U, Baumstark R, Müller M. Liebigs Ann. Chem. 1991; 987
  • 70 Storm O, Lüning U. Eur. J. Org. Chem. 2002; 3680
  • 71 Scrimin P, Tecilla P, Tonellato U. Org. Prep. Proced. Int. 1991; 23: 204
  • 72 Bridger GJ, Skerlj RT, Padmanabhan S, Martellucci SA, Henson GW, Struyf S, Witvrouw M, Schols D, De Clercq E. J. Med. Chem. 1999; 42: 3971
  • 73 Vögtle F, Ohm C. Chem. Ber. 1984; 117: 948
  • 74 Dunn K, Yen TF. Environ. Sci. Technol. 1999; 33: 2821
  • 75 Bharti SK, Roy R. TrAC, Trends Anal. Chem. 2012; 35: 5
  • 76 Cacheris WP, Quay SC, Rocklage SM. Magn. Reson. Imaging 1990; 8: 467
  • 77 Hovinen J. Bioconjugate Chem. 2007; 18: 597
  • 78 Féau C, Klein E, Kerth P, Lebeau L. Bioorg. Med. Chem. Lett. 2007; 17: 1499
  • 79 Lundt BF, Johansen NL, Vølund A, Markussen J. Int. J. Pept. Protein Res. 1978; 12: 258
  • 80 Knör S, Modlinger A, Poethko T, Schottelius M, Wester H.-J, Kessler H. Chem. Eur. J. 2007; 13: 6082