Subscribe to RSS
DOI: 10.1055/s-0035-1561936
Synthesis and Crystal Structures of Stable 4-Aryl-2-(trichloromethyl)-1,3-diaza-1,3-butadienes
Publication History
Received: 20 January 2016
Accepted after revision: 16 February 2016
Publication Date:
12 April 2016 (online)
Abstract
A simple and convenient method to generate 4-aryl-substituted 1H-2-(trichloromethyl)-1,3-diaza-1,3-butadienes from aryl(chloro)methaniminium salts (best known as Vilsmeier–Haack reagents) and trichloroacetamidine has been developed. These 4-aryl-1H-1,3-diazabutadienes are isolable, relatively stable during silica gel chromatography, and can be crystallized. The analysis by X-ray diffraction demonstrated that in the solid state these 1,3-diazabutadienes have an s-cisoid conformation. The principal characteristic of these 1,3-diazabutadienes is their reactivity towards electron-deficient acetylenes, reacting under mild reaction conditions to produce 4-aryl-2-(trichloromethyl)pyrimidines in good yields.
Key words
diazadienes - cycloaddition - nitrogen heterocycles - Vilsmeier–Haack reaction - coupling reactions - iminesSupporting Information
- Supporting Information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561936.
- Supporting Information
-
References
- 1 Boger DL. Tetrahedron 1983; 39: 2869
- 2 Boger DL, Kasper AM. J. Am. Chem. Soc. 1989; 111: 1517
- 3 Jayakumar S, Ishar MP. S, Mahajan MP. Tetrahedron 2002; 58: 379
- 4 Boeckman RK, Reed JE, Ge P. Org. Lett. 2001; 3: 3651
- 5 Boeckman RK, Ge P, Reed JE. Org. Lett. 2001; 3: 3647
- 6 Avalos M, Babiano R, Cintas P, Clemente FR, Jiménez JL, Palacios JC, Sánchez JB. J. Org. Chem. 1999; 64: 6297
- 7 Lorenz V, Hrib CG, Grote D, Hilfert L, Krasnopolski M, Edelmann FT. Organometallics 2013; 32: 4636
- 8 Trifonov AA, Shestakov BG, Lyssenko KA, Larionova J, Fukin GK, Cherkasov AV. Organometallics 2011; 30: 4882
- 9 Tronnier A, Pöthig A, Metz S, Wagenblast G, Münster I, Strassner T. Inorg. Chem. 2014; 53: 6346
- 10 Nandy MS, Sharma M, Pal MM. Tetrahedron Lett. 1987; 28: 2641
- 11 Barluenga J, Tomás M, Ballesteros A, López LA. Tetrahedron Lett. 1989; 30: 4573
- 12 Burger K, Penninger S. Synthesis 1978; 524
- 13 Abbiati G, Contini A, Nava D, Rossi E. Tetrahedron 2009; 65: 4664
- 14 Dalla Croce P, Ferraccioli R, La Rosa C. Heterocycles 1997; 45: 9
- 15 Ibnusaud I, Padma Malar EJ, Sundaram N. Tetrahedron Lett. 1990; 31: 7357
- 16 Luthardt P, Würthwein E.-U. Tetrahedron Lett. 1988; 29: 921
- 17 Guzmán A, Romero M, Talamás FX, Villena R, Greenhouse R, Muchowski JM. J. Org. Chem. 1996; 61: 2470
- 18 Salomon RG, Raychaudhuri SR. J. Org. Chem. 1984; 49: 3659
- 19 Hanessian S, Moralioglu E. Can. J. Chem. 1972; 50: 233
- 20 Usually, amide dimethyl acetals are prepared from the corresponding N,N-dimethylamide and dimethyl sulfate followed by treatment with sodium methoxide; by using this methodology, the N,N-dimethylbenzamide dimethyl acetal can be obtained in low yield (44%) and usually contaminated with N,N-dimethylbenzamide or/and methyl benzoate.
- 21 Muzart J. Tetrahedron 2009; 65: 8313
- 22 Marson CM, Giles PR. Synthesis Using Vilsmeier Reagents (New Directions in Organic & Biological Chemistry). 1st ed. CRC Press; Boca Raton, Florida: 1994
-
23 Kumar AS, Nagarajan R. Org. Lett. 2011; 13: 1398
- 24 De Luca L, Giacomelli G, Porcheddu A. Org. Lett. 2002; 4: 553
- 25 Majo VJ, Perumal PT. Tetrahedron Lett. 1996; 37: 5015
- 26 Lechuga-Eduardo H, Olivo HF, Romero-Ortega M. Eur. J. Org. Chem. 2014; 5910
- 27 White J, McGillivray G. J. Org. Chem. 1977; 42: 4248
- 28 Bharatam PV, Kumar RS, Mahajan MP. Org. Lett. 2000; 2: 2725
- 29 Albert A, Paal B. Chem. Ind. (London) 1974; 874
- 30 CCDC 1430285 (4a), 1430286 (4c), 1430287 (4e), 1430288 (4g), 1430289 (4h). contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.