RSS-Feed abonnieren
DOI: 10.1055/s-0035-1562094
Medium-Ring Stereocontrol in the Temporary Silicon-Tethered Ring-Closing Metathesis Approach to the Synthesis of Polyketide Fragments
Publikationsverlauf
Received: 07. Dezember 2015
Accepted after revision: 07. April 2016
Publikationsdatum:
18. Mai 2016 (online)
¯ To whom all correspondance pertaining to the crystal structure should be sent.
Abstract
The temporary silicon-tethered ring-closing metathesis of chiral non-racemic allylic and homoallylic alcohols affords unsymmetrical Z-configured trisubstituted olefins that readily undergo stereoselective hydroboration and dihydroxylation to provide a novel approach to masked polypropionate and polyol fragments present in an array of biologically important natural products. For example, this strategy provides a convenient method for the construction of polyol fragments relevant to the secondary metabolites amphidinol 3 and lophodiol A, which have antifungal and cytotoxic activity, respectively.
Key words
medium-ring - natural products - ring-closing metathesis - stereocontrol - temporary silicon-tetherSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562094.
- Supporting Information
-
References
- 1a Blunt JW, Copp BR, Keyzers RA, Munro MH. G, Prinsep MR. Nat. Prod. Rep. 2013; 30: 237 ; and pertinent references cited within
- 1b Blunt JW, Copp BR, Keyzers RA, Munro MH. G, Prinsep MR. Nat. Prod. Rep. 2014; 31: 160
- 2a Epoxide Rearrangement: Jung ME, D’Amico DC. J. Am. Chem. Soc. 1997; 119: 12150
- 2b Marshall-Tamaru Propargylation: Marshall JA, Adams ND. J. Org. Chem. 1999; 64: 5201
- 2c Cyanohydrin Acetonide Alkylation: Sinz CJ, Rychnovsky SD. Top. Curr. Chem. 2001; 216: 51
- 2d Directed Nitrile Oxide Cycloaddition: Bode JW, Fraefel N, Muri D, Carreira EM. Angew. Chem. Int. Ed. 2001; 40: 2082
- 2e Acyl Halide-Aldehyde Cyclocondensation (AAC): Shen X, Wasmuth AS, Zhao J, Zhu C, Nelson SG. J. Am. Chem. Soc. 2006; 128: 7438
- 2f C–C Bond Forming Transfer Hydrogenation: Dechert-Schmitt A.-MR, Schmitt DC, Gao X, Itoh T, Krische MJ. Nat. Prod. Rep. 2014; 31: 504 ; and pertinent references cited within
- 3a Evans PA In Metathesis in Natural Product Synthesis . Cossy J, Arseniyadis S, Meyer C. Wiley-VCH; Weinheim: 2010. Chap. 8, 22
- 3b Čusak A. Chem. Eur. J. 2012; 18: 5800
- 4a Evans PA, Murthy VS. J. Org. Chem. 1998; 63: 6768
- 4b Evans PA, Cui J, Gharpure SJ, Polosukhin A, Zhang H.-R. J. Am. Chem. Soc. 2003; 125: 14702
- 5 Evans PA, Cui J, Buffone GP. Angew. Chem. Int. Ed. 2003; 42: 1734
- 6a Hoye TR, Jeffrey CS, Tennakoon MA, Wang J, Zhao H. J. Am. Chem. Soc. 2004; 126: 10210
- 6b Hoye TR, Jeon J, Kopel LC, Ryba TD, Tennakoon MA, Wang Y. Angew. Chem. Int. Ed. 2010; 49: 6151
- 6c Matsui R, Seto K, Fujita K, Suzuki T, Nakazaki A, Kobayashi S. Angew. Chem. Int. Ed. 2010; 49: 10068 ; see also ref. 7
- 7 The E-silaketals should facilitate the opposite diastereoisomer thereby further expanding the synthetic utility of this process.
- 8 Still WC, Galynker I. Tetrahedron 1981; 37: 3981
- 9 Grisin A, Evans PA. Chem. Sci. 2015; 6: 6407
- 10a Miller SJ, Kim S.-H, Chen Z.-R, Grubbs RH. J. Am. Chem. Soc. 1995; 117: 2108
- 10b Michaut A, Rodriguez J. Angew. Chem. Int. Ed. 2006; 45: 5740
- 11 VanRheenen V, Kelly RC, Cha DY. Tetrahedron Lett. 1976; 17: 1973
- 12 CCDC 1059620 contains the supplementary crystallographic data for the 3,5-dinitrobenzoate ester of 8a. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 13a Cha JK, Christ WJ, Kishi Y. Tetrahedron Lett. 1983; 24: 3943
- 13b Cha JK, Christ WJ, Kishi Y. Tetrahedron 1984; 40: 2247
- 14 For a comprehensive review of studies on discodermolide biology and chemistry, see: Longley RE. Natural Products and Cancer Drug Discovery . Springer; New York: 2013: 39 , and pertinent references cited within
- 15 For a recent approach to the trisubstituted olefin of (+)-discodermolide, see: Yu Z, Ely RJ, Morken JP. Angew. Chem. Int. Ed. 2014; 53: 9632
- 16 For the isolation and original structural elucidation of amphidinol 3, see: Murata M, Matsuoka S, Matsumori N, Paul GK, Tachibana K. J. Am. Chem. Soc. 1999; 121: 870
- 17a Flamme EM, Roush WR. Org. Lett. 2005; 7: 1411
- 17b Paquette LA, Chang S.-K. Org. Lett. 2005; 7: 3111
- 17c Huckins JR, de Vicente J, Rychnovsky SD. Org. Lett. 2007; 9: 4757
- 17d Cossy J, Tsuchiya T, Reymond S, Kreuzer T, Colobert F, Markó IE. Synlett 2009; 2706
- 17e Rival N, Hazelard D, Hanquet G, Kreuzer T, Bensoussan C, Reymond S, Cossy J, Colobert F. Org. Biomol. Chem. 2012; 10: 9418
- 17f Rival N, Hanquet G, Bensoussan C, Reymond S, Cossy J, Colobert F. Org. Biomol. Chem. 2013; 11: 6829
- 17g Tsuruda T, Ebine M, Umeda A, Oishi T. J. Org. Chem. 2015; 80: 859
- 18 For the isolation and structure elucidation of lophodiol A, see: Sánchez MC, Ortega MJ, Zubía E, Carballo JL. J. Nat. Prod. 2006; 69: 1749
For selected examples of non-aldol methods for the synthesis of polyketide fragments, see:
For recent reviews on the development of temporary silicon-tethered ring-closing metathesis reactions and their application in synthesis, see:
For the homo- and cross-coupling of chiral non-racemic allylic alcohols, see:
For a related process that provides E- and Z-trisubstituted silaketals, see:
For the challenges associated with the formation of eight-membered rings containing di- and trisubstituted alkenes using RCM, see:
For approaches toward the C20–C26 domain of AM3 (1), see: