Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(17): 2481-2484
DOI: 10.1055/s-0035-1562477
DOI: 10.1055/s-0035-1562477
letter
Lanthanum Pentafluorobenzoate-Catalyzed Aerobic Oxidative Olefination of Benzylamines with 2-Methylquinoline through Deamination and C–H Bond Functionalization
Further Information
Publication History
Received: 05 May 2016
Accepted after revision: 23 June 2016
Publication Date:
19 July 2016 (online)
Abstract
An efficient direct aerobic oxidative olefination of the methyl groups of 2-methylquinolines with benzylamines in the presence of a rare-earth-metal Lewis acid catalyst to give 2-styrylquinolines was successfully developed. Preliminary mechanistic studies revealed that the oxidative olefination reaction proceeds through a Lewis acid-catalyzed 2-methylquinoline–aldehyde condensation and an amine–aldehyde condensation.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562477.
- Supporting Information
-
References and Notes
- 1 Yuan H, Parrill AL. Bioorg. Med. Chem. 2002; 10: 4169
- 2a Merschaert A, Boquel P, Van Hoeck J.-P, Gorissen H, Borghese A, Bonnier B, Mockel A, Napora F. Org. Process Res. Dev. 2006; 10: 776
- 2b McNamara JM, Leazer JL, Bhupathy M, Amato JS, Reamer RA, Reider PJ, Grabowski EJ. J. J. Org. Chem. 1989; 54: 3718
- 2c King AO, Corley EG, Anderson RK, Larsen RD, Verhoeven TR, Reider PJ, Xiang YB, Belley M, Leblanc Y. J. Org. Chem. 1993; 58: 3731
- 2d Gauthier JY, Jones T, Champion E, Charette L, Dehaven R, Ford-Hutchinson AW, Hoogsteen K, Lord A, Masson P, Piechuta H, Pong SS, Springer JP, Thérien M, Zamboni R, Young RN. J. Med. Chem. 1990; 33: 2841
- 2e Zamboni R, Belley M, Champion E, Charette L, DeHaven R, Frenetta R, Gauthier JY, Jones TR, Leger S, Masson P, McFarlane CS, Metters K, Pong SS, Piechuta H, Rokach J, Thérien M, Williams HW. R, Young RN. J. Med. Chem. 1992; 35: 3832
- 3a Mekouar K, Mouscadet J.-F, Desmaële D, Subra F, Leh H, Savouré D, Auclair C, d’Angelo J. J. Med. Chem. 1998; 41: 2846
- 3b Polanski J, Zouhiri F, Jeanson L, Desmaële D, d’Angelo J, Mouscadet J.-F, Gieleciak R, Gasteiger J, Le Bret M. J. Med. Chem. 2002; 45: 4647
- 3c Zouhiri F, Mouscadet J.-F, Mekouar K, Desmaële D, Savouré D, Leh H, Subra F, Le Bret M, Auclair C, d’Angelo J. J. Med. Chem. 2000; 43: 1533
- 4 Budyka MF, Potashova NI, Gavrishova TN, Lee VM. J. Mater. Chem. 2009; 19: 7721
- 5a Yan Y, Xu K, Fang Y, Wang Z. J. Org. Chem. 2011; 76: 6849
- 5b Qian B, Xie P, Xie Y, Huang H. Org. Lett. 2011; 13: 2580
- 6 Zhang Y.-G, Xu J.-K, Li X.-M, Tian S.-K. Eur. J. Org. Chem. 2013; 3648
- 7 Li Y, Guo F, Zha Z, Wang Z. Chem. Asian J. 2013; 8: 534
- 8 Mao D, Hong G, Wu S, Liu X, Yu J, Wang L. Eur. J. Org. Chem. 2014; 3009
- 9 Tang J, Wang L, Mao D, Wang W, Zhang L, Wu S, Xie Y. Tetrahedron 2011; 67: 8465
- 10a Murahashi S.-I, Okano Y, Sato H, Nakae T, Komiya N. Synlett 2007; 1675
- 10b Suzuki K, Watanabe T, Murahashi S.-I. Angew. Chem. Int. Ed. 2008; 47: 2079
- 10c Hamamoto H, Suzuki Y, Takahashi H, Ikegami S. Tetrahedron Lett. 2007; 48: 4239
- 10d Nicolaou KC, Mathison CJ. N, Montagnon T. J. Am. Chem. Soc. 2004; 126: 5192
- 11a Hoffman RV. J. Am. Chem. Soc. 1976; 98: 6702
- 11b Tamami B, Yeganeh H. Eur. Polym. J. 1999; 35: 1445
- 11c Srogl J, Voltrova S. Org. Lett. 2009; 11: 843
- 11d Sobhani S, Aryanejad S, Maleki MF. Helv. Chim. Acta 2012; 95: 613
- 11e Chaudhari HK, Telvekar VN. Synth. Commun. 2013; 43: 1155
- 11f Yang Z, Wang A, Chen X, Gui Q, Liu J, Tan Z, Wang H, Shi J.-C. Synlett 2013; 24: 1549
- 12a Gao L, Tang H, Wang Z. Chem. Commun. 2014; 50: 4085
- 12b Zhang Q, Yang F, Wu Y. Chem. Commun. 2013; 49: 6837
- 12c Khemnar AB, Bhanage BM. Org. Biomol. Chem. 2014; 12: 9631
- 12d Behera A, Rout SK, Guin S, Patel BK. RSC Adv. 2014; 4: 55115
- 12e Hong G, Mao D, Zhu X, Wu S, Wang L. Org. Chem. Front. 2015; 2: 985
- 13 Gong L, Xing L.-J, Xu T, Zhu X.-P, Zhou W, Kang N, Wang B. Org. Biomol. Chem. 2014; 12: 6557
- 14 Liu X, Mao D, Wu S, Yu J, Hong G, Zhao Q, Wang L. Sci. China: Chem. 2014; 57: 1132
- 15 Mao D, Tang J, Wang W, Liu X, Wu S, Yu J, Wang L. Org. Biomol. Chem. 2015; 13: 2122
- 16 Mao D, Tang J, Wang W, Wu S, Liu X, Yu J, Wang L. J. Org. Chem. 2013; 78: 12848
- 17 (E)-2-Styrylquinolines 3a–x; General Procedure La(Pfb)3 (0.015 mmol) was added to a solution of the appropriate 2-methylquinoline 1 (0.3 mmol) and amine 2 (0.6 mmol) in toluene (0.5 mL), and the mixture was stirred at 120 °C for 24 h. The mixture was then concentrated under vacuum, and the product was isolated by column chromatography (silica gel, hexane–EtOAc). 2-[(E)-2-Phenylvinyl]quinoline (3a) White solid: yield: 71.9 mg (90%); mp 98–100 °C. 1H NMR (400 MHz, CDCl3): δ = 8.13 (d, J = 8.8 Hz, 1 H), 8.08 (d, J = 8.4 Hz, 1 H), 7.79 (d, J = 8.0 Hz, 1 H), 7.73–7.64 (m, 5 H), 7.50 (td, J = 8.0 Hz, 1.2 Hz, 1 H), 7.44–7.39 (m, 3 H), 7.35–7.31 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 156.0, 148.3, 136.5, 136.4, 134.5, 129.8, 129.2, 129.0, 128.8, 128.7, 127.5, 127.4, 127.3, 126.2, 119.3. HRMS (ESI): [M + H]+ calcd for C17H14N: 232.1126; found: 232.1128.