Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2016; 48(23): 4175-4180
DOI: 10.1055/s-0035-1562528
DOI: 10.1055/s-0035-1562528
paper
Stereoselective Total Synthesis of (±)-Dasycarpidol and (±)-Dasycarpidone
Further Information
Publication History
Received: 23 May 2016
Accepted after revision: 10 July 2016
Publication Date:
16 August 2016 (online)
Abstract
The protecting-group-free and scalable total syntheses of (±)-dasycarpidol and (±)-dasycarpidone, as well as the formal total synthesis of (±)-uleine, are presented starting from a common tetrahydrocarbazole-fused lactone that is conveniently prepared on multigram scale. The key azocino[4,3-b]indole skeleton is constructed via the DDQ-mediated dehydrogenative cyclization of a tetrahydrocarbazole derivative possessing an amide side chain. The syntheses of the target natural products are accomplished in high yields and in a few steps by employing readily available conventional reagents.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562528.
- Supporting Information
-
References
- 1 Clardy J, Walsh C. Nature 2004; 432: 829
- 2 Paterson I, Anderson EA. Science 2005; 310: 451
- 3a Chin Y.-W, Balunas MJ, Chai HB, Kinghorn AD. AAPS J. 2006; 8: EE239
- 3b Newman DJ, Cragg GM. J. Nat. Prod. 2007; 70: 461
- 3c Ganesan A. Curr. Opin. Chem. Biol. 2008; 12: 306
- 3d Newman DJ, Cragg GM. J. Nat. Prod. 2016; 79: 629
- 4 Ortholand JY, Ganesan A. Curr. Opin. Chem. Biol. 2004; 8: 271
- 5a Leonard J. Nat. Prod. Rep. 1999; 16: 319
- 5b Kim J, Movassaghi M. Chem. Soc. Rev. 2009; 38: 3035
- 5c Schmidt AW, Reddy KR, Knölker H.-J. Chem. Rev. 2012; 112: 3193
- 6a Mizoguchi H, Oikawa H, Oguri H. Nat. Chem. 2014; 6: 57
- 6b Wang Y, Tu M.-S, Yin L, Sun M, Shi F. J. Org. Chem. 2015; 80: 3223
- 7a Baggio CH, Otofuji GM, Souza WM, Santos CA. M, Torres LM. B, Rieck L, Marques MC. A, Mesia-Vale S. Planta Med. 2005; 71: 733
- 7b Nardin JM, Souza WM, Lopes JF, Florão Â, Santos CA. M, Weffort-Santos AM. Planta Med. 2008; 74: 1253
- 7c Seidl C, Correia BL, Stinghen EM, Santos CA. M. Z. Naturforsch. 2010; 65c: 440
- 8a Bonjoch J, Casamitjana N, Gràcia J, Bosch J. J. Chem. Soc., Chem. Commun. 1991; 1687
- 8b Gràcia J, Casamitjana N, Bonjoch J, Bosch J. J. Org. Chem. 1994; 59: 3939
- 9a ref. 8a.
- 9b ref. 8b
- 9c Jackson A, Gaskell AJ, Wilson ND. V, Joule JA. Chem. Commun. 1968; 364
- 9d Dolby LJ, Biere H. J. Am. Chem. Soc. 1968; 90: 2699
- 9e Jackson A, Wilson ND. V, Gaskell AJ, Joule JA. J. Chem Soc. C 1969; 2738
- 9f Dolby LJ, Biere H. J. Org. Chem. 1970; 35: 3843
- 9g Kametani T, Suzuki T. J. Org. Chem. 1971; 36: 1291
- 9h Kametani T, Suzuki T. Chem. Pharm. Bull. 1971; 19: 1424
- 9i Tang F, Banwell MG, Willis AC. J. Org. Chem. 2016; 81: 2950
- 10a Saito M, Kawamura M, Hiroya K, Ogasawara K. Chem. Commun. 1997; 765
- 10b Amat M, Pérez M, Llor N, Martinelli M, Molins E, Bosch J. Chem. Commun. 2004; 1602
- 11a Wilson ND. V, Jackson A, Gaskell AJ, Joule JA. Chem. Commun. 1968; 584a
- 11b ref. 9e.
- 11c Büchi G, Gould SJ, Näf F. J. Am. Chem. Soc. 1971; 93: 2492
- 11d Schmitt MH, Blechert S. Angew. Chem. Int. Ed. 1997; 36: 1474
- 11e Patir S, Uludag N. Tetrahedron 2009; 65: 115
- 11f Patir S, Ertürk E. Org. Biomol. Chem. 2013; 11: 2804
- 11g ref. 9i.
- 12a ref. 10a.
- 12b ref. 10b.
- 12c Amat M, Pérez M, Llor N, Escolano C, Luque FJ, Molins E, Bosch J. J. Org. Chem. 2004; 69: 8681
- 13 Joule JA, Ohashi M, Gilbert B, Djerassi C. Tetrahedron 1965; 21: 1717
- 14a Magnus P, Sear NL, Kim CS, Vicker N. J. Org. Chem. 1992; 57: 70
- 14b Patir S, Ertürk E. J. Org. Chem. 2011; 76: 335
- 14c Martin CL, Nakamura S, Otte R, Overman LE. Org. Lett. 2011; 13: 138
- 14d Reekie TA, Banwell MG, Willis AC. J. Org. Chem. 2012; 77: 10773 ; and references cited therein
- 15a Uludag N, Hökelek T, Patir S. J. Heterocycl. Chem. 2006; 43: 585
- 15b Uzgoren A, Uludag N, Okay G, Patir S. J. Heterocycl. Chem. 2009; 46: 1416
- 16a Smith MB, March J. March’s Advanced Organic Chemistry . 6th ed. John Wiley & Sons; Hoboken: 2007: 1415-1420
- 16b Yu SH, Ferguson MJ, McDonald R, Hall DG. J. Am. Chem. Soc. 2005; 127: 12808
- 16c Ramachandran PV, Pratihar D, Biswas D. Org. Lett. 2006; 8: 3877
- 17a Basha A, Lipton M, Weinreb SM. Tetrahedron Lett. 1977; 18: 4171
- 17b Lipton MF, Basha A, Weinreb SM. Org. Synth. 1979; 59: 49
- 17c Ghosh AK, Cappiello J, Shin D. Tetrahedron Lett. 1998; 39: 4651
-
17d Nicolaou KC, Xu J, Murphy F, Barluenga S, Baudoin O, Wei H.-X, Gray DL, Ohshima T. Angew. Chem. Int. Ed. 1999; 38: 2447
- 17e Takayama H, Fujiwara R, Kasai Y, Kitajima M, Aimi N. Org. Lett. 2003; 5: 2967
- 17f Belmar J, Funk RL. J. Am. Chem. Soc. 2012; 134: 16941
- 18 Bosch and co-workers previously reported the total synthesis of dasycarpidol [(±)-1] in epimeric form; see: refs. 8a and 8b.
- 19 For a critical review on scalable total synthesis, see: Kuttruff CA, Eastgate MD, Baran PS. Nat. Prod. Rep. 2014; 31: 419
- 20 For a very important review on protecting-group-free synthesis, see: Young IS, Baran PS. Nat. Chem. 2009; 1: 193
- 21 Newhouse T, Baran PS, Hoffman RW. Chem. Soc. Rev. 2009; 38: 3010
- 22 Wender PA, Miller BL. Nature 2009; 460: 197
- 23 Hendrickson JB. J. Am. Chem. Soc. 1975; 97: 5784
For reviews on the impact of natural products upon drug discovery, see:
For syntheses of dasycarpidol in the form of an isomeric mixture, see:
For syntheses of dasycarpidone, see:
For enantioselective syntheses of dasycarpidone, see:
For racemic total syntheses of uleine, see:
For enantioselective total syntheses of uleine, see:
For selected publications on the construction of the hexahydro-1,5-methano-1H-azocino[4,3-b]indole ring, see:
For acid-catalyzed lactone formation, see: