Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(18): 2557-2560
DOI: 10.1055/s-0035-1562605
DOI: 10.1055/s-0035-1562605
letter
Synthesis of Chiral Phosphorous and Phosphoric Acid Derivatives from the Lignans Matairesinol and Conidendrin
Further Information
Publication History
Received: 29 June 2016
Accepted after revision: 08 July 2016
Publication Date:
15 August 2016 (online)
Abstract
Methods for the preparation of phosphites and phosphates from chiral diols based on lignan backbones were developed. Four novel phosphites and one phosphate were synthesized and characterized. Sterically hindered diols showed diastereoselectivity in formations of phosphites, whereas non-hindered diols showed no selectivity.
Key words
lignan - matairesinol - conidendrin - chiral 1,4-diols - chiral phosphites - chiral phosphates - chiral poolSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562605.
- Supporting Information
-
References and Notes
- 1 Holmbom B, Eckerman C, Eklund P, Hemming J, Nisula L, Reunanen M, Sjöholm R, Sundberg A, Sundberg K, Willför S. Phytochem. Rev. 2003; 2: 331
- 2 Brusentsev Y, Sandberg T, Hotokka M, Sjöholm R, Eklund P. Tetrahedron Lett. 2013; 54: 1112
- 3 Brusentsev Y, Hänninen M, Eklund P. Synlett 2013; 24: 2423
- 4 Brusentsev Y, Eklund P. Catal. Today 2015; 241: 260
- 5 Pichota A, Gramlich V, Bichsel H.-U, Styner T, Knöpfel T, Wünsch R, Hintermann T, Schweizer WB, Beck AK, Seebach D. Helv. Chim. Acta 2012; 95: 1273
- 6 Gliga A, Klare H, Schumacher M, Soki F, Neudörfl JM, Goldfuss B. Eur. J. Org. Chem. 2011; 256
- 7 Vicario J, Ortiz P, Palacios F. Eur. J. Org. Chem. 2013; 7095
- 8 Palacios F, Olszewski TK, Vicario J. Org. Biomol. Chem. 2010; 8: 4255
- 9 Enders D, Tedeschi L, Bats JW. Angew. Chem. Int. Ed. 2000; 39: 4605
- 10 Enders D, Tedeschi L, Förster D. Synthesis 2006; 1447
- 11 Tedeschi L, Enders D. Org. Lett. 2001; 3: 3515
- 12 Nahm MR, Potnick JR, White PS, Johnson JS. J. Am. Chem. Soc. 2006; 128: 2751
- 13 Linghu X, Potnick JR, Johnson JS. J. Am. Chem. Soc. 2004; 126: 3070
- 14 Nahm MR, Linghu X, Potnick JR, Yates CM, White PS, Johnson JS. Angew. Chem. Int. Ed. 2005; 44: 2377
- 15 Garrett MR, Tarr JC, Johnson JS. J. Am. Chem. Soc. 2007; 129: 12944
- 16 Jiang X.-B, Minnaard AJ, Hessen B, Feringa BL, Duchateau AL. L, Andrien JG. O, Boogers JA. F, de Vries JG. Org. Lett. 2003; 5: 1503
- 17 Dong K, Wang Z, Ding K. J. Am. Chem. Soc. 2012; 134: 12474
- 18a Kampen D, Reisinger CM, List B. Chiral Brønsted Acids for Asymmetric Organocatalysis. In Asymmetric Organocatalysis . Springer Verlag; Berlin, Heidelberg: 2009: 395-456
- 18b Akiyama T. Chem. Rev. 2007; 107: 5744
- 18c Terada M. Synthesis 2010; 12: 1929
- 18d Monaco M, Pupo G, List B. Synlett 2016; 27: 1027
- 19 General Procedure for the Preparation of the Phosphites 9–12: Diol 1, 2, 5 or 6 (0.5 mmol) was dissolved in anhyd THF (5 mL) and Et3N (1.5 mmol) was added. The solution was cooled to –10 °C and PCl3 was added dropwise over 5–10 min. The cooling was removed and the mixture was stirred at r.t. for 12 h. Then H2O (2 mmol) was added. The mixture was stirred for additional 1 h and then filtered. The filtrate was evaporated and purified by column chromatography on silica (eluent CH2Cl2–acetone, 10:1) to give the product as white or yellowish sticky solid. Phosphite 9: yield: 140 mg (62%). 1H NMR (600 MHz, CDCl3): δ = 1.88–1.93 (m, 1 H), 1.94–1.99 (m, 1 H), 2.69 (dd, J = 13.8, 7.4 Hz, 1 H), 2.75 (dd, J = 13.9, 7.2 Hz, 1 H), 2.87 (dd, J = 13.8, 8.5 Hz, 1 H), 2.98 (dd, J = 13.9, 8.9 Hz, 1 H), 3.84 (s, 3 H), 3.84 (s, 3 H), 3.84–3.87 (m, 2 H), 3.88 (s, 3 H), 3.88 (s, 3 H), 4.28 (t, J = 11.3 Hz, 1 H), 4.69 (t, J = 12.1 Hz, 1 H), 6.61 (d, J = 1.9 Hz, 1 H), 6.66 (dd, J = 8.3, 1.9 Hz, 1 H), 6.66 (d, J = 1.9 Hz, 1 H), 6.69 (dd, J = 7.9, 1.9 Hz, 1 H), 6.80 (d, J = 7.9 Hz, 1 H), 6.81 (d, J = 8.3 Hz, 1 H), 6.93 (d, J = 706.00 Hz, 1 H). 13C NMR (151 MHz, CDCl3): δ = 35.88, 36.28, 42.36, 43.40, 55.84, 55.87, 55.90, 55.92, 63.08 (d, JC–P = 6.6 Hz), 63.66 (d, JC–P = 6.6 Hz), 111.25, 111.27, 111.99, 112.16, 121.09, 131.04, 131.13, 147.66, 147.76, 148.96, 149.05. 31P NMR (243 MHz, CDCl3): δ = 11.60 (br s). HRMS (ESI): m/z [M + Na]+ calcd for C22H29NaO7P: 459.1543; found: 459.1541. For compounds 10–12 and 17, see Supporting Information.
- 20 Akiyama T, Itoh J, Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
- 21 Biaggi C, Benaglia M, Annunziata R, Rossi S. Chirality 2010; 22: 369
- 22 Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356