Synthesis, Table of Contents Synthesis 2016; 48(23): 4260-4268DOI: 10.1055/s-0035-1562611 paper © Georg Thieme Verlag Stuttgart · New York Transition-Metal-Free Terminal Alkyne Addition to Isatins Kalyan Dhara Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India Email: ocjd@iacs.res.in , Ajoy Kapat Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India Email: ocjd@iacs.res.in , Tridev Ghosh Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India Email: ocjd@iacs.res.in , Jyotirmayee Dash* Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India Email: ocjd@iacs.res.in › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract A ‘direct’ alkynylation of isatins, which uses potassium tert-butoxide to provide the desired 3-hydroxy-3-ethynyl-2-oxindoles in good to high yields, is reported. This protocol proceeds smoothly for both electron-rich and electron-deficient alkynes in comparable reaction rates and does not require any specially design ligand or expensive transition-metal catalysts. Key words Key wordsalkynes - 3-hydroxy-3-ethynylindolin-2-ones - HIV - isatins - nucleophiles - addition - transition-metal-free Full Text References References 1 Trost BM. Science 1991; 254: 1471 2 Paladhi S, Bhati M, Panda D, Dash J. J. Org. Chem. 2014; 79: 1473 3a Suzuki H, Morita H, Shiro M, Kobayashi J. Tetrahedron 2004; 60: 2489 3b Kamano Y, Zhang H.-P, Ichihara Y, Kizu H, Komiyama K, Pettit GR. Tetrahedron Lett. 1995; 36: 2783 3c Kawasaki T, Nagaoka M, Satoh T, Okamoto A, Ukon R, Ogawa A. Tetrahedron 2004; 60: 3493 3d Miah S, Moody CJ, Richards IC, Slawin AM. Z. J. Chem. Soc., Perkin Trans. 1 1997; 2405 3e Rasmussen HB, MacLeod JK. J. Nat. Prod. 1997; 60: 1152 4 Boechat N, Kover WB, Bongertz V, Bastos MM, Romeiro NC, Azevedo ML. G, Wollinger W. Med. Chem. (Sharjah, United Arab Emirates) 2007; 3: 533 For alkyne addition to carbonyls, see: 5a Trost BM, Weiss AH. Adv. Synth. Catal. 2009; 351: 963 5b Carreira EM, Frantz DE In Science of Synthesis: Stereoselective Synthesis . Vol. 2. Molander GA. Thieme; Stuttgart: 2011: 497 5c Li C.-J. Acc. Chem. Res. 2010; 43: 581 For alkyne addition to ketones, see: 6a Tzalis D, Knochel P. Angew. Chem. Int. Ed. 1999; 38: 1463 6b Chen C.-Y, Tiller RD, Grabowski EJ. J, Reider PJ. Angew. Chem. Int. Ed. 1999; 38: 711 6c Choudhury A, Moore JR, Pierce ME, Fortunak JM, Valvis I, Confalone PN. Org. Process Res. Dev. 2003; 7: 324 6d Jiang B, Tang X. Org. Lett. 2002; 4: 3451 6e Dhondi PK, Chisholm JD. Org. Lett. 2006; 8: 67 6f Dhondi PK, Carberry P, Choi LB, Chisholm JD. J. Org. Chem. 2007; 72: 9590 6g Motoki R, Kanai M, Shibasaki M. Org. Lett. 2007; 9: 2997 6h Deng G.-J, Li C.-J. Synlett 2008; 1571 6i Brummond KM, Osbourn JM. Beilstein J. Org. Chem. 2010; 6: 33 6j Chinkov N, Warm A, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 2957 For catalytic alkyne addition to ketones, see: 7a Cozzi PG. Angew. Chem. Int. Ed. 2003; 42: 2895 7b Lu G, Li X, Jia X, Chan WL, Chan AS. C. Angew. Chem. Int. Ed. 2003; 42: 5057 7c Saito B, Katsuki T. Synlett 2004; 1557 7d Cozzi PG, Alesi S. Chem. Commun. 2004; 2448 7e Liu L, Wang R, Kang Y.-F, Chen C, Xu Z.-Q, Zhou Y.-F, Ni M, Cai H.-Q, Gong M.-Z. J. Org. Chem. 2005; 70: 1084 Reference for alkyne addition to aldehydes, see: 8a Viehe HG, Reinstein M. Chem. Ber. 1962; 95: 2557 8b Brandsma L. Preparative Acetylenic Chemistry. 2nd ed. Elsevier; Amsterdam: 1988 8c Wang Q, Pu L. Synlett 2013; 24: 1340 9 Chen G, Wang Y, Guo S, He H.-P, Li S.-L, Zhang J.-X, Ding J, Hao X.-J. J. Heterocycl. Chem. 2009; 46: 217 10 Fu X.-P, Liu L, Wang D, Chen Y.-J, Li C.-J. Green Chem. 2011; 13: 549 11 Chouhan M, Senwar KR, Kumar K, Sharma R, Nair VA. Synthesis 2014; 46: 195 12 Midya GC, Kapat A, Maiti S, Dash J. J. Org. Chem. 2015; 80: 4148 13 Babler JH, Liptak VP, Phan N. J. Org. Chem. 1996; 61: 416 14a Burke MD, Schreiber SL. Angew. Chem. Int. Ed. 2004; 43: 46 14b O’Connor CJ, Beckmann HS. G, Spring DR. Chem. Soc. Rev. 2012; 41: 4444 15 Bew SP, Hiatt-Gipson GD, Lovell JA, Poullain C. Org. Lett. 2012; 14: 456 A stoichiometric amount of 18-crown-6 was added to the alkynylation reaction of isatin 1a with phenylacetylene (2a) under the standard reaction conditions. The reaction afforded 3aa in 60% yield, a 20% inhibition of product formation compared to the reaction in the absence of 18-crown-6 (Table 1, entry 7). Only partial inhibition of the product yield was observed; possibly toluene is not the best solvent for efficient 1:1 complex formation; see: 16a Izzat RM, Pawlak K, Bradshaw JS. Chem. Rev. 1991; 91: 1721 16b Li Y, Huszthy P, Móczár I, Szemenyei B, Kunsági-Máté S. Chem. Phys. Lett. 2013; 556: 94 17 Different aryl ketones (benzaldehydes, acetophenone, trifluoroacetophenone) and aryl diketones (benzil and 9,10-phenanthrenequinone) were used as the electrophilic partner. As expected, none of these substrates, except trifluoroacetophenone, afforded the corresponding addition products. The aryl ketone trifluoroacetophenone, due to its high electrophilicity, provided the desired product in low (30%) yield. Under similar reaction conditions, the alkynylation of acetone with phenylacetylene did not proceed to give the desired product. 18 CCDC 1433098 contains the supplementary crystallographic data for 3da in this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. Supplementary Material Supplementary Material Supporting Information