Synthesis 2016; 48(24): 4443-4450
DOI: 10.1055/s-0035-1562727
paper
© Georg Thieme Verlag Stuttgart · New York

Multicomponent Domino Synthesis and Antibacterial Activity of Neomycin–Sugar Conjugates

Aurora Sganappa
a   Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, via Mancinelli 7, 20141 Milano, Italy   eMail: alessandro.volonterio@polimi.it
,
Maria Cristina Bellucci
b   Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20131 Milano, Italy
,
Victor Nizet
c   Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
,
Yitzhak Tor*
d   Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA   eMail: ytor@ucsd.edu
,
Alessandro Volonterio*
a   Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, via Mancinelli 7, 20141 Milano, Italy   eMail: alessandro.volonterio@polimi.it
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 21. Mai 2016

Accepted after revision: 27. Juni 2016

Publikationsdatum:
16. August 2016 (online)


This manuscript is dedicated to the memory of Vincenzo Volonterio

Abstract

An efficient multicomponent domino process that works under mild conditions was used for the synthesis of systematically modified neomycin–sugar conjugates. The final aminoglycoside derivatives were tested against methicillin-resistant Staphylococcus aureus, Klebsiella, and E. coli strains, and show activity comparable to the parent antibiotics. Such a strategy can impact multicomponent combinatorial syntheses of diverse biologically active conjugates.

Supporting Information

 
  • References

  • 1 Waksman SA, Bugie E, Schatz A. Proc. Soc. Exp. Biol. Med. 1944; 55: 66
  • 2 Magnet S, Blanchard JS. Chem. Rev. 2005; 105: 477
  • 3 Hermann T, Tor Y. Expert Opin. Ther. Pat. 2005; 15: 49
  • 4 Hermann T. Cell. Mol. Life Sci. 2007; 64: 1841
  • 5 Fair RJ, Tor Y. Perspect. Med. Chem. 2014; 6: 25
  • 6 Zhou J, Wang G, Zhang L.-H, Ye X.-S. Med. Res. Rev. 2007; 27: 279
  • 7 Houghton JL, Green KD, Chen W, Garneau-Tsodickova S. ChemBioChem 2010; 11: 880
  • 8 Fridman M, Belakhov V, Yaron S, Baasov T. Org. Lett. 2003; 5: 3575
  • 9 Luedtke NW, Liu Q, Tor Y. Biochemistry 2003; 42: 11391
  • 10 Blount KF, Zhao F, Hermann T, Tor Y. J. Am. Chem. Soc. 2005; 127: 9818
  • 11 Blount KF, Tor Y. ChemBioChem 2006; 7: 1612
  • 12 Bastian AA, Warszawik EM, Panduru P, Arenz C, Herrmann A. Chem. Eur. J. 2013; 19: 9151
  • 13 Berkov-Zrihen Y, Herzog IM, Feldman M, Fridman M. Org. Lett. 2013; 15: 6144
  • 14 Matsushita T, Chen W, Juskeviciene R, Teo Y, Shcherbakov D, Vasella A, Böttger EC, Crich D. J. Am. Chem. Soc. 2015; 137: 7706
  • 15 Kellish PC, Kumar S, Mack TS, Spano NM, Henning M, Arya DP. Med. Chem. Commun. 2014; 5: 1235
  • 16 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
  • 17 Dömling A. Chem. Rev. 2006; 106: 17
  • 18 Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
  • 19 Ganem B. Acc. Chem. Res. 2009; 42: 463
  • 20 Biggs-Houck JE, Younai A, Shaw JT. Curr. Opin. Chem. Biol. 2010; 14: 371
  • 21 Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
  • 22 Park WK. C, Auer M, Jaksche H, Wong C.-H. J. Am. Chem. Soc. 1996; 118: 10150
  • 23 Volonterio A, Ramirez de Arellano C, Zanda M. J. Org. Chem. 2005; 70: 2161
  • 24 Bellucci MC, Marcelli T, Scaglioni L, Volonterio A. RSC Adv. 2011; 1: 1250
  • 25 Olimpieri F, Bellucci MC, Marcelli T, Volonterio A. Org. Biomol. Chem. 2012; 10: 9538
  • 26 Bellucci MC, Volonterio A. Adv. Synth. Catal. 2010; 352: 2791
  • 27 Bellucci MC, Ghilardi A, Volonterio A. Org. Biomol. Chem. 2011; 9: 8379
  • 28 Bellucci MC, Terraneo G, Volonterio A. Org. Biomol. Chem. 2013; 11: 2421
  • 29 Bellucci MC, Volonterio A. Eur. J. Org. Chem. 2014; 2386
  • 30 Bellucci MC, Sani M, Sganappa A, Volonterio A. ACS Comb. Sci. 2014; 16: 711
  • 31 Bellucci MC, Sganappa A, Sani M, Volonterio A. Tetrahedron 2015; 71: 7630
  • 32 All attempts to separate the diastereoisomers by flash chromatography and HPLC failed.
  • 33 The cyclization was unexpected for the mild conditions used. We have found only one literature example of an intramolecular reaction between a urea and an ester leading to the formation of a dihydrouracil ring, promoted by phosphoric acid at 100 °C for 17 h; see: Uneyama K, Makio S, Nanbu H. J. Org. Chem. 1989; 54: 872
  • 34 Arya DP. Acc. Chem. Res. 2011; 44: 134
  • 35 Fosso MY, Li Y, Garneau-Tsodickova S. Med. Chem. Commun. 2014; 5: 1075
  • 36 Fosso MY, Shrestha SK, Green KT, Garneau-Tsodickova S. J. Med. Chem. 2015; 58: 9124