Subscribe to RSS
DOI: 10.1055/s-0035-1563703
Lyophilisierung humaner Blut- und Stammzellen – Neue Methoden der Langzeitkonservierung für die Raumfahrt und terrestrische Anwendungen
Lyophilization of human blood and stem cells – New methods of long term preservation for space travel and terrestrial applicationsPublication History
Publication Date:
17 August 2015 (online)
Explorationsmissionen außerhalb des Erdorbits erfordern eine weitgehende Autonomie der Crew in der medizinischen Versorgung. Hier stellt sich die zwingende Frage nach einer sicheren und robusten Lagerungsmöglichkeit von Blutprodukten unter möglichst geringem Massen- und Energiebudget. Die Lypophilisierung humaner Zellen könnte für die Raumfahrtmedizin ein Meilenstein in der Konservierung primärer Zellen darstellen. Sie wurde im Jahr 2009 erstmals experimentell an hämatopoietischen Zellen erfolgreich durchgeführt und würde Transport und Langzeitlagerung von Blutprodukten und hämatopoietischen Stammzellen ohne Gefriersysteme ermöglichen.
Exploration missions beyond Earth orbit are associated with a maximum autonomy of the crew with regard to medical support and treatment. This raises the compelling question of safe and robust storage methods for cellular blood products at the lowest possible mass and energy budget. Lyophilization of human cells could represent a milestone in the preservation of primary cells for space medicine. It was carried out successfully in 2009 for the first time for hematopoietic cells and would allow long-term storage and transportation of cellular blood products and hematopoietic stem cells without any freezing systems. Lyophilized cells stored at ambient temperature would provide economic and practical advantages over approaches employing cell freezing and subzero temperature storage.
-
Literatur
- 1 Zeitlin C, Hassler DM, Cucinotta FA et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 2013; 340: 1080-1084
- 2 Crowe JH, Hoekstra FA, Crowe LM. Anhydrobiosis. Ann Rev Physiol 1992; 54: 579-599
- 3 Clegg JS. The origin of trehalose and its significance during formation of encysted dormant embryos of Artemia salina. Comp Biochem Physiol 1965; 14: 135-143
- 4 Clegg JS. Cryptobiosis – a peculiar state of biological organization. Comp Biochem Physiol B Biochem Mol Biol 2001; 128: 613-624
- 5 Crowe JH, Crowe LM, Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 1984; 223: 701-703
- 6 Crowe JH. Trehalose as a „chemical chaperone“: Fact and fantasy. In: Csermely P, Vigh L, eds. Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. New York: Springer; 2007: 143-158
- 7 Oliver AE. Dry state preservation of nucleated cells: progress and challenges. Biopreserv Biobank 2012; 10: 376-385
- 8 Zeng XM, Martin GP, Marriott C. Effects of molecular weight of polyvinylpyrrolidone on the glass transition and crystallization of colyophilized sucrose. Int J Pharm 2001; 218: 63-73
- 9 Stoll C, Wolkers WF. Membrane Stability during Biopreservation of Blood Cells. Transfus Med Hemother 2011; 38: 89-97
- 10 Arnold P, Djerassi I, Farber S et al. The preparation and clinical administration of lyophilized platelet material to children with acute leukemia and aplastic anemia. J Pediatr 1956; 49: 517-522
- 11 Bode AP, Lust RM, Read MS, Fischer TH. Correction of the bleeding time with lyophilized platelet 66 infusions in dogs on cardiopulmonary bypass. Clin Appl Thromb Hemost 2008; 14: 38-54
- 12 Kondo M, Wagers AJ, Manz MG et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 2003; 21: 759-806
- 13 Nakamizo F, Marini F, Amano T et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 64: 3307-3318
- 14 Winer JP, Janmey PA, McCormick ME, Funaki M. Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A 2009; 15: 147-154
- 15 Powell-Dunford N, Quesada JF, Malsby RF et al. Risk management analysis of air ambulance blood product administration in combat operations. Aviat Space Environ Med 2014; 85: 1130-1135
- 16 Wolkers WF, Walker NJ, Tablin F, Crowe JH. Human platelets loaded with trehalose survive freeze-drying. Cryobiology 2001; 42: 79-87
- 17 Török Z, Satpathy GR, Banerjee M et al. Preservation of Trehalose-Loaded Red Blood Cells by Lyophilization. Cell Preserv Technol 2005; 2: 96-111
- 18 Satpathy GR, Török Z, Bali R et al. Loading red blood cells with trehalose: a step towards biostabilization. Cryobiology 2004; 49: 123-136
- 19 Kheirolomoom A, Satpathy GR, Török Z et al. Phospholipid vesicles increase the survival of freeze-dried human red blood cells. Cryobiology 2005; 51: 290-305
- 20 Zhou X, Yuan J, Liu J, Liu B. Loading trehalose into red blood cells by electroporation and its application in freeze-drying. Cryo Letters 2010; 31: 147-156
- 21 Arav A, Natan D. Freeze drying of red blood cells: the use of directional freezing and a new radio frequency lyophilization device. Biopreserv Biobank 2012; 10: 386-394
- 22 Natan D, Nagler A, Aray A. Freeze-drying of mononuclear cells derived from umbilical cord blood followed by colony formation. PLoS One 2009; 4
- 23 Xiao HH, Hua TC, Li J et al. Freeze drying of mononuclear cells and whole blood of human cord blood. Cryo Letters 2004; 25: 111-120
- 24 Li J, Hua TC, Gu XL et al. Morphology study of freeze-drying mononuclear cells of human cord blood. Cryo Letters 2005; 26: 193-200
- 25 Buchanan SS, Pyatt DW, Carpenter JF. Preservation of differentiation and clonogenic potential of human hematopoietic stem and progenitor cells during lyophilization and ambient storage. PLoS One 2010; 5
- 26 Zhang SZ, Qian H, Wang Z et al. Preliminary study on the freeze-drying of human bone marrow-derived mesenchymal stem cells. J Zhejiang Univ Sci B 2010; 11: 889-894