Flugmedizin · Tropenmedizin · Reisemedizin - FTR 2015; 22(4): 171-177
DOI: 10.1055/s-0035-1563704
Raumfahrtmedizin
© Georg Thieme Verlag Stuttgart · New York

Die menschliche Hämostase unter Weltraumbedingungen – Relevant nicht nur für die Flug- und Raumfahrtmedizin?

The human hemostasis in the space related environment – relevance beyond the field of aerospace medicine?
Tobias Ahnert
1   Universität Witten/Herdecke, Lehrstuhl für Unfallchirurgie / Orthopädie, Klinik für Unfallchirurgie, Orthopädie und Sporttraumatologie, Krankenhaus Köln-Merheim
,
Peter Gauger
2   Weltraumphysiologie, Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln
,
Wolfram Sies
2   Weltraumphysiologie, Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln
,
Marc Maegele
1   Universität Witten/Herdecke, Lehrstuhl für Unfallchirurgie / Orthopädie, Klinik für Unfallchirurgie, Orthopädie und Sporttraumatologie, Krankenhaus Köln-Merheim
,
Ulrich Limper
2   Weltraumphysiologie, Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
17. August 2015 (online)

Die Bedingungen eines Raumflugs beeinflussen die Hämostase. Die Einflussfaktoren sind vielfältig und umfassen neben Mikro- und Hypergravitation auch orthostatischen und psychologischen Stress. Neben Astronauten und Piloten setzen sich auch immer mehr Menschen im Rahmen ihrer Freizeitgestaltung erhöhter und abgeschwächter Schwerkraft auf Achterbahnen, Parabelflügen und in Zukunft an Bord von kommerziellen Raumflügen aus.

Diese Übersichtsarbeit befasst sich mit den Auswirkungen bemannter Weltraumflüge auf die menschliche Hämostase. Anhand der Literatur und eigenen Studienergebnissen zeigen die Autoren die Physiologie des Gerinnungssystems unter Weltraumbedingungen auf und verknüpfen Erkenntnisse der physiologischen Grundlagenforschung mit Fragen der praktischen Flug- und Raumfahrtmedizin.

Die Autoren kommen zu dem Schluss, dass Hypergravitation das Gerinnungspotenzial des menschlichen Blutes erhöht. Außerdem finden sie Anhaltspunkte dafür, dass das Gerinnungspotenzial in Mikrogravitation abgeschwächt ist.

Spaceflight impacts human hemostasis (HH). However influencing factors are manifold and comprise micro- and hypergravity, orthostatic and psychological stress. Not only astronauts and pilots are exposed to increased or decreased gravity levels but also normal individuals are in an increasing manner for the purpose of recreation. Rapid gravity transitions occur in parabolic and suborbital commercial space flights or during roller coaster rides.

Therefore this survey focuses on the HH in space and in the space related environment. The authors describe the particular behavior of the HH in the space related context by reviewing the literature and stating their own research results thereby bringing together basic physiological research with applied aerospace medicine.

The authors present strong evidence for a hypercoagulability evoked by hypergravity but find only weak evidence for a diminished clotting potential in microgravity.

 
  • Literatur

  • 1 Space Science Board, National Academy of Sciences, National Research Council. Space Research: Directions for the Future. Washington DC: National Academies Press; 1966
  • 2 worldspaceflight.com. Im Internet: http://www.worldspaceflight.com/bios/stats.php
  • 3 Barratt MR, Pool SL eds. Principles of Clinical Medicine for Space Flight. New York: Springer; 2008
  • 4 Herold G Hrsg. Innere Medizin: eine vorlesungsorientierte Darstellung. Gerd Herold 2009;
  • 5 Kuipers S, Schreijer AJ, Cannegieter SC et al. Travel and venous thrombosis: a systematic review. J Intern Med 2007; 262: 615-634
  • 6 Rowe WJ. The Apollo 15 Space Syndrome. Circulation 1998; 97: 119-120
  • 7 Heindl B, Spannagl M. Gerinnungsmanagement beim perioperativen Blutungsnotfall. Bremen: UNI-MED; 2008
  • 8 Davydov DM, Zhdanov RI, Dvoenosov VG et al. Resilience to orthostasis and haemorrhage: A pilot study of common genetic and conditioning mechanisms. Sci Rep 2015; 5: 10703-10703
  • 9 Masoud M, Sarig G, Brenner B, Jacob G. Orthostatic hypercoagulability: a novel physiological mechanism to activate the coagulation system. Hypertension 2008; 51: 1545-1551
  • 10 Masoud M, Sarig G, Brenner B, Jacob G. Hydration does not prevent orthostatic hypercoagulability. Thromb Haemost 2010; 103: 284-290
  • 11 Cvirn G, Schlagenhauf A, Leschnik B et al. Coagulation changes during presyncope and recovery. PloS one 2012; 7
  • 12 Buckey Jr JC, Lane LD, Levine BD et al. Orthostatic intolerance after spaceflight. J Appl Physiol (1985) 1996; 81: 7-18
  • 13 Cayce WR, Zerull RG. Myocardial infarction occurring at the conclusion of centrifuge training in a 37-year-old aviator. Aviat Space Environ Med 1992; 63: 1106-1108
  • 14 Pelletier AR, Gilchrist J. Roller coaster related fatalities, United States, 1994-2004. Inj Prev 2005; 11: 309-312
  • 15 Gerzer R. Hypergravity and microgravity influence haemostasis. Thromb Haemost 2009; 101: 799-799
  • 16 Roller Coaster DataBase.
  • 17 Pattarini JM, Blue RS, Castleberry TL, Vanderploeg JM. Preflight screening techniques for centrifuge-simulated suborbital spaceflight. Aviat Space Environ Med 2014; 85: 1217-1221
  • 18 van Loon JJWA. The Human Centrifuge. Microgravity Sci Technol 2009; 21: 203-207
  • 19 Maier JA, Cialdai F, Monici M, Morbidelli L. The impact of microgravity and hypergravity on endothelial cells. Biomed Res Int 2015; 2015: 434803-434803
  • 20 Rubenstein DA, Yin W. Hypergravity and hypobaric hypoxic conditions promote endothelial cell and platelet activation. High Alt Med Biol 2014; 15: 396-405
  • 21 Dai K, Wang Y, Yan R et al. Effects of microgravity and hypergravity on platelet functions. Thromb Haemost 2009; 101: 902-910
  • 22 Li S, Shi Q, Liu G, Zhang W et al. Mechanism of platelet functional changes and effects of anti-platelet agents on in vivo hemostasis under different gravity conditions. J Appl Physiol (1985) 2010; 108: 1241-1249
  • 23 Li S, Shi Q, Wang Z et al. Hypergravity results in human platelet hyperactivity. Journal of physiology and biochemistry 2009; 65: 147-156
  • 24 Frigeri A, Iacobas DA, Iacobas S et al. Effect of microgravity on gene expression in mouse brain. Exp Brain Res 2008; 191: 289-300
  • 25 Schini-Kerth VB. Vascular biosynthesis of nitric oxide: effect on hemostasis and fibrinolysis. Transfus Clin Biol 1999; 6: 355-363
  • 26 Pavy-Le Traon A, Heer M, Narici MV et al. From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 2007; 101: 143-194
  • 27 Navasiolava NM, Custaud MA, Tomilovskaya ES et al. Long-term dry immersion: review and prospects. Eur J Appl Physiol 2011; 111: 1235-1260
  • 28 Martin DG, Convertino VA, Goldwater D et al. Plasma viscosity elevations with simulated weightlessness. Aviat Space Environ Med 1986; 57: 426-431
  • 29 Venemans-Jellema A, Schreijer AJ, Le Cessie S et al. No effect of isolated long-term supine immobilization or profound prolonged hypoxia on blood coagulation. J Thromb Haemost 2014; 12: 902-909
  • 30 Arinell K, Fröbert O, Blanc S et al. Downregulation of platelet activation markers during long-term immobilization. Platelets 2013; 24: 369-374
  • 31 Ganse B, Limper U, Buhlmeier J, Rittweger J. Petechiae: reproducible pattern of distribution and increased appearance after bed rest. Aviat Space Environ Med 2013; 84: 864-866
  • 32 Haider T, Gunga HC, Matteucci-Gothe R et al. Effects of long-term head-down-tilt bed rest and different training regimes on the coagulation system of healthy men. Physiol Rep 2013; 1
  • 33 Ikarugi H, Taka T, Nakajima S et al. Norepinephrine, but not epinephrine, enhances platelet reactivity and coagulation after exercise in humans. J Appl Physiol (1985) 1999; 86: 133-138
  • 34 Kuzichkin DS, Markin AA, Morukov BV et al. [Effect of physical countermeasures against support load deficiency on the hemostasis system in an experiment with 7-day immersion]. Aviakosm Ekolog Med 2013; 47: 30-34
  • 35 Kimzey SL, Ritzmann SE, Mengel CE, Fischer CL. Skylab experiment results: hematology studies. Acta Astronaut 1975; 2: 141-154
  • 36 Kuzichkin DS, Morukov BV, Markin AA et al. [Hemostasis system indices after short-term space flights and during 7-day „dry“ immersion experiment]. Fiziol Cheloveka 2010; 36: 125-129
  • 37 Jain V, Wotring V. Menstrual Cycle Control and Venous Thrombembolism Risk in Female Astronauts. Im Internet: http://www.ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150008176.pdf
  • 38 Campbell MR, Billica RD, Johnston 3rd. SL. Surgical bleeding in microgravity. Surg Gynecol Obstet 1993; 177: 121-125
  • 39 Norcross J, Norsk P, Law J et al. Effects of the 8 psia/32% O2 Atmosphere on the Human in the Spaceflight Environment 2013. Im Internet: http://www.ston.jsc.nasa.gov/collections/trs/_techrep/TM-2013-217377.pdf
  • 40 Martin DS, Pate JS, Vercueil A et al. Reduced coagulation at high altitude identified by thromboelastography. Thromb Haemost 2012; 107: 1066-1071
  • 41 Jauchem JR, Waligora JM, Taylor GR et al. Hematological changes following repetitive decompressions during simulated extravehicular activity. Int Arch Occup Environ Health 1986; 58: 277-285
  • 42 Kuzichkin DS, Markin AA, Morukov BV. [Hemostasis system indices in the course of a 105-day hermo chamber isolation experiment]. Fiziol Cheloveka 2011; 37: 129-131
  • 43 Kraaijenhagen RA, in t Anker PS, Koopman MM et al. High plasma concentration of factor VIIIc is a major risk factor for venous thromboembolism. Thromb Haemost 2000; 83: 5-9