Pneumologie 2016; 70(06): 372-378
DOI: 10.1055/s-0035-1563788
Serie: Translationale Forschung in der Pneumologie
© Georg Thieme Verlag KG Stuttgart · New York

Neue pathogenetische Konzepte und pharmakologische Studien zur adjuvanten Therapie bei schwerer Pneumonie

New Pathogenetic Concepts and Pharmacological Studies on Adjuvant Therapy in Severe Pneumonia
J. Lienau
Charité – Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie
,
H. Müller-Redetzky
Charité – Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie
,
N. Suttorp
Charité – Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie
,
M. Witzenrath
Charité – Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie
› Author Affiliations

Subject Editor: M. Witzenrath, Berlin
Further Information

Publication History

eingereicht 02 October 2015

akzeptiert nach Revision 13 October 2015

Publication Date:
04 December 2015 (online)

Zusammenfassung

Das akute Lungenversagen bei schwerer Pneumonie ist Folge einer Aktivierung des angeborenen Immunsystems mit schädigender Hyperinflammation, Verlust der alveolokapillären Barrierefunktion sowie mikrozirkulatorischen Störungen. Bislang existiert neben der antimikrobiellen Therapie keine pharmakologische Strategie zur Prävention oder Behandlung des akuten Lungenversagens bei Pneumonie. In präklinischen Studien konnten vielversprechende Zielmoleküle identifiziert werden, und neuartige therapeutische Ansätze zeigten bei Pneumonie protektive Effekte hinsichtlich der Entwicklung eines akuten Lungenschadens. In diesem Übersichtsartikel werden einige adjuvante therapeutische Strategien bei Pneumonie vorgestellt und Zukunftsperspektiven diskutiert.

Abstract

Acute lung injury secondary to pneumonia results from inadequate activation of the innate immune system with hyperinflammation and alveolar-capillary barrier dysfunction. To date, effective strategies for prevention or treatment of acute lung injury in pneumonia besides antibiotics are lacking. In preclinical studies, promising therapeutic targets have been identified and novel strategies demonstrated to protect against lung failure in pneumonia. This review highlights some adjuvant therapeutic strategies for modulation of inflammation and stabilization of lung barrier function in pneumonia.

 
  • Literatur

  • 1 WHO. Pneumonia. Fact sheet N°331. 2015. http://www.who.int/mediacentre/factsheets/fs331/en/ [Date last updated: November 2014. Date last accessed: March 30]
  • 2 Hoffken G, Lorenz J, Kern W et al. [Epidemiology, diagnosis, antimicrobial therapy and management of community-acquired pneumonia and lower respiratory tract infections in adults. Guidelines of the Paul-Ehrlich-Society for Chemotherapy, the German Respiratory Society, the German Society for Infectiology and the Competence Network CAPNETZ Germany]. Pneumologie 2009; 63: e1-68
  • 3 Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34: 637-650
  • 4 Rock KL, Lai JJ, Kono H. Innate and adaptive immune responses to cell death. Immunol Rev 2011; 243: 191-205
  • 5 Opitz B, van Laak V, Eitel J et al. Innate immune recognition in infectious and noninfectious diseases of the lung. Am J Respir Crit Care Med 2010; 181: 1294-1309
  • 6 Muller-Redetzky HC, Suttorp N, Witzenrath M. Dynamics of pulmonary endothelial barrier function in acute inflammation: mechanisms and therapeutic perspectives. Cell Tissue Res 2014; 355: 657-673
  • 7 Ranieri VM, Rubenfeld GD, Thompson BT et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307: 2526-2533
  • 8 Esteban A, Anzueto A, Frutos F et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 2002; 287: 345-355
  • 9 Amato MB, Barbas CS, Medeiros DM et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338: 347-354
  • 10 Brochard L, Roudot-Thoraval F, Roupie E et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 1998; 158: 1831-1838
  • 11 Brower RG, Shanholtz CB, Fessler HE et al. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 1999; 27: 1492-1498
  • 12 Brower RG, Lanken PN, MacIntyre N et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351: 327-336
  • 13 Villar J, Kacmarek RM, Perez-Mendez L et al. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 2006; 34: 1311-1318
  • 14 Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000; 342: 1301-1308
  • 15 Verbrugge SJ, Lachmann B, Kesecioglu J. Lung protective ventilatory strategies in acute lung injury and acute respiratory distress syndrome: from experimental findings to clinical application. Clin Physiol Funct Imaging 2007; 27: 67-90
  • 16 Network TARDS. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000; 342: 1301-1308
  • 17 Briel M, Meade M, Mercat A et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010; 303: 865-873
  • 18 Talmor D, Sarge T, Malhotra A et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359: 2095-2104
  • 19 Alhazzani W, Alshahrani M, Jaeschke R et al. Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care 2013; 17: R43
  • 20 Guerin C, Reignier J, Richard JC et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368: 2159-2168
  • 21 Papazian L, Forel JM, Gacouin A et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010; 363: 1107-1116
  • 22 Sud S, Friedrich JO, Taccone P et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 2010; 36: 585-599
  • 23 Nie W, Zhang Y, Cheng J et al. Corticosteroids in the treatment of community-acquired pneumonia in adults: a meta-analysis. PloS one 2012; 7: e47926
  • 24 Confalonieri M, Urbino R, Potena A et al. Hydrocortisone infusion for severe community-acquired pneumonia: a preliminary randomized study. Am J Respir Crit Care Med 2005; 171: 242-248
  • 25 Garcia-Vidal C, Calbo E, Pascual V et al. Effects of systemic steroids in patients with severe community-acquired pneumonia. Eur Respir J 2007; 30: 951-956
  • 26 Tagami T, Matsui H, Horiguchi H et al. Low-dose corticosteroid use and mortality in severe community-acquired pneumonia patients. Eur Respir J 2015; 45: 463-472
  • 27 Blum CA, Nigro N, Briel M et al. Adjunct prednisone therapy for patients with community-acquired pneumonia: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2015; 385: 1511-1518
  • 28 Torres A, Sibila O, Ferrer M et al. Effect of corticosteroids on treatment failure among hospitalized patients with severe community-acquired pneumonia and high inflammatory response: a randomized clinical trial. JAMA 2015; 313: 677-686
  • 29 Menendez R, Torres A, Zalacain R et al. Risk factors of treatment failure in community acquired pneumonia: implications for disease outcome. Thorax 2004; 59: 960-965
  • 30 Menendez R, Cavalcanti M, Reyes S et al. Markers of treatment failure in hospitalised community acquired pneumonia. Thorax 2008; 63: 447-452
  • 31 Lisboa T, Blot S, Waterer GW et al. Radiologic progression of pulmonary infiltrates predicts a worse prognosis in severe community-acquired pneumonia than bacteremia. Chest 2009; 135: 165-172
  • 32 Ben DF, Yu XY, Ji GY et al. TLR4 mediates lung injury and inflammation in intestinal ischemia-reperfusion. J Surg Res 2012; 174: 326-333
  • 33 Hilberath JN, Carlo T, Pfeffer MA et al. Resolution of Toll-like receptor 4-mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3. FASEB J 2011; 25: 1827-1835
  • 34 Imai Y, Kuba K, Neely GG et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008; 133: 235-249
  • 35 Tauseef M, Knezevic N, Chava KR et al. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. J Exp Med 2012; 209: 1953-1968
  • 36 Zanotti G, Casiraghi M, Abano JB et al. Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema. Am J Physiol Lung Cell Mol Physiol 2009; 297: L52-63
  • 37 Mullarkey M, Rose JR, Bristol J et al. Inhibition of endotoxin response by e5564, a novel Toll-like receptor 4-directed endotoxin antagonist. J Pharmacol Exp Ther 2003; 304: 1093-1102
  • 38 Lynn M, Rossignol DP, Wheeler JL et al. Blocking of responses to endotoxin by E5564 in healthy volunteers with experimental endotoxemia. J Infect Dis 2003; 187: 631-639
  • 39 Tidswell M, Tillis W, Larosa SP et al. Phase 2 trial of eritoran tetrasodium (E5564), a toll-like receptor 4 antagonist, in patients with severe sepsis. Crit Care Med 2010; 38: 72-83
  • 40 Opal SM, Laterre PF, Francois B et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 2013; 309: 1154-1162
  • 41 Bhattacharya P, Budnick I, Singh M et al. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy. J Interferon Cytokine Res 2015; Mar 24 [Epub ahead of print]
  • 42 Meisel C, Schefold JC, Pschowski R et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med 2009; 180: 640-648
  • 43 Huang FF, Barnes PF, Feng Y et al. GM-CSF in the lung protects against lethal influenza infection. Am J Respir Crit Care Med 2011; 184: 259-268
  • 44 Standiford LR, Standiford TJ, Newstead MJ et al. TLR4-dependent GM-CSF protects against lung injury in Gram-negative bacterial pneumonia. Am J Physiol Lung Cell Mol Physiol 2012; 302: L447-454
  • 45 Steinwede K, Tempelhof O, Bolte K et al. Local delivery of GM-CSF protects mice from lethal pneumococcal pneumonia. J Immunol 2011; 187: 5346-5356
  • 46 Subramaniam R, Barnes PF, Fletcher K et al. Protecting against post-influenza bacterial pneumonia by increasing phagocyte recruitment and ROS production. J Infect Dis 2014; 209: 1827-1836
  • 47 Paine 3rd R, Standiford TJ, Dechert RE et al. A randomized trial of recombinant human granulocyte-macrophage colony stimulating factor for patients with acute lung injury. Crit Care Med 2012; 40: 90-97
  • 48 Presneill JJ, Harris T, Stewart AG et al. A randomized phase II trial of granulocyte-macrophage colony-stimulating factor therapy in severe sepsis with respiratory dysfunction. Am J Respir Crit Care Med 2002; 166: 138-143
  • 49 Herold S, Hoegner K, Vadasz I et al. Inhaled granulocyte/macrophage colony-stimulating factor as treatment of pneumonia-associated acute respiratory distress syndrome. Am J Respir Crit Care Med 2014; 189: 609-611
  • 50 Mastellos D, Morikis D, Isaacs SN et al. Complement: structure, functions, evolution, and viral molecular mimicry. Immunol Res 2003; 27: 367-386
  • 51 Peng Q, Li K, Sacks SH et al. The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses. Inflamm Allergy Drug Targets 2009; 8: 236-246
  • 52 Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol 2005; 23: 821-852
  • 53 Wang R, Xiao H, Guo R et al. The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg Microbes Infect 2015; 4: e28
  • 54 Liu ZM, Zhu SM, Qin XJ et al. Silencing of C5a receptor gene with siRNA for protection from Gram-negative bacterial lipopolysaccharide-induced vascular permeability. Mol Immunol 2010; 47: 1325-1333
  • 55 Müller-Redetzky HC, Kellermann U, Tschernig T et al. Neutralizing the complement component C5a protects against lung injury and extrapulmonary organ injury in pneumococcal pneumonia induced sepsis. Am J Respir Crit Care Med 2014; 189: A1647
  • 56 Anderson R, Steel HC, Cockeran R et al. Clarithromycin alone and in combination with ceftriaxone inhibits the production of pneumolysin by both macrolide-susceptible and macrolide-resistant strains of Streptococcus pneumoniae. J Antimicrob Chemother 2007; 59: 224-229
  • 57 Kanoh S, Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev 2010; 23: 590-615
  • 58 Hoffken G, Lorenz J, Kern W et al. [Epidemiology, diagnosis, antimicrobial therapy and management of community-acquired pneumonia and lower respiratory tract infections in adults. Guidelines of the Paul-Ehrlich-Society for Chemotherapy, the German Respiratory Society, the German Society for Infectiology and the Competence Network CAPNETZ Germany]. Pneumologie 2009; 63: e1-68
  • 59 Mandell LA, Wunderink RG, Anzueto A et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007; 44 (Suppl. 02) S27-72
  • 60 Woodhead M, Blasi F, Ewig S et al. Guidelines for the management of adult lower respiratory tract infections – summary. Clin Microbiol Infect 2011; 17 (Suppl. 06) 1-24
  • 61 Martinez JA, Horcajada JP, Almela M et al. Addition of a macrolide to a beta-lactam-based empirical antibiotic regimen is associated with lower in-hospital mortality for patients with bacteremic pneumococcal pneumonia. Clin Infect Dis 2003; 36: 389-395
  • 62 Restrepo MI, Mortensen EM, Waterer GW et al. Impact of macrolide therapy on mortality for patients with severe sepsis due to pneumonia. Eur Respir J 2009; 33: 153-159
  • 63 Asadi L, Sligl WI, Eurich DT et al. Macrolide-based regimens and mortality in hospitalized patients with community-acquired pneumonia: a systematic review and meta-analysis. Clin Infect Dis 2012; 55: 371-380
  • 64 Garin N, Genne D, Carballo S et al. beta-Lactam monotherapy vs beta-lactam-macrolide combination treatment in moderately severe community-acquired pneumonia: a randomized noninferiority trial. JAMA Intern Med 2014; 174: 1894-1901
  • 65 Postma DF, van Werkhoven CH, van Elden LJ et al. Antibiotic treatment strategies for community-acquired pneumonia in adults. N Engl J Med 2015; 372: 1312-1323
  • 66 Araujo FG, Slifer TL, Remington JS. Effect of moxifloxacin on secretion of cytokines by human monocytes stimulated with lipopolysaccharide. Clin Microbiol Infect 2002; 8: 26-30
  • 67 Dalhoff A. Immunomodulatory activities of fluoroquinolones. Infection 2005; 33 (Suppl. 02) 55-70
  • 68 Donnarumma G, Paoletti I, Buommino E et al. Anti-inflammatory effects of moxifloxacin and human beta-defensin 2 association in human lung epithelial cell line (A549) stimulated with lipopolysaccharide. Peptides 2007; 28: 2286-2292
  • 69 Weiss T, Shalit I, Blau H et al. Anti-inflammatory effects of moxifloxacin on activated human monocytic cells: inhibition of NF-kappaB and mitogen-activated protein kinase activation and of synthesis of proinflammatory cytokines. Antimicrob Agents Chemother 2004; 48: 1974-1982
  • 70 Muller-Redetzky HC, Wienhold SM, Berg J et al. Moxifloxacin is not anti-inflammatory in experimental pneumococcal pneumonia. J Antimicrob Chemother 2015; 70: 830-840
  • 71 Brunkhorst FM, Oppert M, Marx G et al. Effect of empirical treatment with moxifloxacin and meropenem vs meropenem on sepsis-related organ dysfunction in patients with severe sepsis: a randomized trial. JAMA 2012; 307: 2390-2399
  • 72 Czyzyk TA, Ning Y, Hsu MS et al. Deletion of peptide amidation enzymatic activity leads to edema and embryonic lethality in the mouse. Dev Biol 2005; 287: 301-313
  • 73 Caron KM, Smithies O. Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc Natl Acad Sci U S A 2001; 98: 615-619
  • 74 Ichikawa-Shindo Y, Sakurai T, Kamiyoshi A et al. The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity. J Clin Invest 2008; 118: 29-39
  • 75 Dackor RT, Fritz-Six K, Dunworth WP et al. Hydrops fetalis, cardiovascular defects, and embryonic lethality in mice lacking the calcitonin receptor-like receptor gene. Mol Cell Biol 2006; 26: 2511-2518
  • 76 Agorreta J, Zulueta JJ, Montuenga LM et al. Adrenomedullin expression in a rat model of acute lung injury induced by hypoxia and LPS. Am J Physiol Lung Cell Mol Physiol 2005; 288: L536-545
  • 77 Cheung BM, Hwang IS, Li CY et al. Increased adrenomedullin expression in lungs in endotoxaemia. J Endocrinol 2004; 181: 339-345
  • 78 Matheson PJ, Mays MP, Hurt RT et al. Adrenomedullin is increased in the portal circulation during chronic sepsis in rats. Am J Surg 2003; 186: 519-525
  • 79 Dackor R, Caron K. Mice heterozygous for adrenomedullin exhibit a more extreme inflammatory response to endotoxin-induced septic shock. Peptides 2007; 28: 2164-2170
  • 80 Hippenstiel S, Witzenrath M, Schmeck B et al. Adrenomedullin reduces endothelial hyperpermeability. Circ Res 2002; 91: 618-625
  • 81 Itoh T, Obata H, Murakami S et al. Adrenomedullin ameliorates lipopolysaccharide-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol 2007; 293: L446-452
  • 82 Temmesfeld-Wollbruck B, Brell B, David I et al. Adrenomedullin reduces vascular hyperpermeability and improves survival in rat septic shock. Intensive Care Med 2007; 33: 703-710
  • 83 Müller HC, Witzenrath M, Tschernig T et al. Adrenomedullin attenuates ventilator-induced lung injury in mice. Thorax 2010; 65: 1077-1084
  • 84 Muller-Redetzky HC, Will D, Hellwig K et al. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin. Crit Care 2014; 18: R73
  • 85 David S, Kumpers P, van Slyke P et al. Mending leaky blood vessels: the angiopoietin-Tie2 pathway in sepsis. J Pharmacol Exp Ther 2013; 345: 2-6
  • 86 Eklund L, Saharinen P. Angiopoietin signaling in the vasculature. Exp Cell Res 2013; 319: 1271-1280
  • 87 Eklund L, Olsen BR. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 2006; 312: 630-641
  • 88 Scharpfenecker M, Fiedler U, Reiss Y et al. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 2005; 118: 771-780
  • 89 Fiedler U, Reiss Y, Scharpfenecker M et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 2006; 12: 235-239
  • 90 Parikh SM, Mammoto T, Schultz A et al. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 2006; 3: e46
  • 91 Calfee CS, Gallagher D, Abbott J et al. Plasma angiopoietin-2 in clinical acute lung injury: prognostic and pathogenetic significance. Crit Care Med 2012; 40: 1731-1737
  • 92 David S, Mukherjee A, Ghosh CC et al. Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis. Crit Care Med 2012; 40: 3034-3041
  • 93 Ziegler T, Horstkotte J, Schwab C et al. Angiopoietin 2 mediates microvascular and hemodynamic alterations in sepsis. J Clin Invest 2013; 123: 3436-3445
  • 94 Mammoto T, Parikh SM, Mammoto A et al. Angiopoietin-1 requires p190 RhoGAP to protect against vascular leakage in vivo. J Biol Chem 2007; 282: 23910-23918
  • 95 Witzenbichler B, Westermann D, Knueppel S et al. Protective role of angiopoietin-1 in endotoxic shock. Circulation 2005; 111: 97-105
  • 96 McCarter SD, Mei SH, Lai PF et al. Cell-based angiopoietin-1 gene therapy for acute lung injury. Am J Respir Crit Care Med 2007; 175: 1014-1026
  • 97 Xu J, Qu J, Cao L et al. Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol 2008; 214: 472-481
  • 98 David S, Park JK, Meurs M et al. Acute administration of recombinant Angiopoietin-1 ameliorates multiple-organ dysfunction syndrome and improves survival in murine sepsis. Cytokine 2011; 55: 251-259
  • 99 Huang YQ, Sauthoff H, Herscovici P et al. Angiopoietin-1 increases survival and reduces the development of lung edema induced by endotoxin administration in a murine model of acute lung injury. Crit Care Med 2008; 36: 262-267
  • 100 Mei SH, McCarter SD, Deng Y et al. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 2007; 4: e269
  • 101 Tournaire R, Simon MP, le Noble F et al. A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor. EMBO Rep 2004; 5: 262-267
  • 102 Kumpers P, Gueler F, David S et al. The synthetic tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis. Crit Care 2011; 15: R261
  • 103 David S, Ghosh CC, Kumpers P et al. Effects of a synthetic PEG-ylated Tie-2 agonist peptide on endotoxemic lung injury and mortality. Am J Physiol Lung Cell Mol Physiol 2011; 300: L851-862
  • 104 Sugiyama MG, Armstrong SM, Wang C et al. The Tie2-agonist Vasculotide rescues mice from influenza virus infection. Sci Rep 2015; 5: 11030
  • 105 Cribbs SK, Matthay MA, Martin GS. Stem cells in sepsis and acute lung injury. Crit Care Med 2010; 38: 2379-2385
  • 106 Mao M, Wang SN, Lv XJ et al. Intravenous delivery of bone marrow-derived endothelial progenitor cells improves survival and attenuates lipopolysaccharide-induced lung injury in rats. Shock 2010; 34: 196-204
  • 107 Bhattacharya J, Matthay MA. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu Rev Physiol 2013; 75: 593-615
  • 108 Islam MN, Das SR, Emin MT et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 2012; 18: 759-765
  • 109 Burnham EL, Taylor WR, Quyyumi AA et al. Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. Am J Respir Crit Care Med 2005; 172: 854-860
  • 110 Luo TH, Wang Y, Lu ZM et al. The change and effect of endothelial progenitor cells in pig with multiple organ dysfunction syndromes. Crit Care 2009; 13: R118
  • 111 Patschan SA, Patschan D, Temme J et al. Endothelial progenitor cells (EPC) in sepsis with acute renal dysfunction (ARD). Crit Care 2011; 15: R94
  • 112 Lam CF, Liu YC, Hsu JK et al. Autologous transplantation of endothelial progenitor cells attenuates acute lung injury in rabbits. Anesthesiology 2008; 108: 392-401
  • 113 Fan H, Goodwin AJ, Chang E et al. Endothelial progenitor cells and a SDF-1alpha analogue synergistically improve survival in sepsis. Am J Respir Crit Care Med 2014; 189: 1509-1519
  • 114 Muller-Redetzky H, Lienau J, Suttorp N et al. Therapeutic strategies in pneumonia: going beyond antibiotics. Eur Respir Rev 2015; 24: 516-524