Subscribe to RSS
DOI: 10.1055/s-0035-1564177
Pitfalls in der [18F]-FET-PET-Diagnostik von Hirntumoren
Pitfalls of [18F]-FET PET in the Diagnostics of Brain TumorsPublication History
Publication Date:
15 December 2015 (online)
Zusammenfassung
Die strukturelle Bildgebung mit der Magnetresonanztomografie (MRT) ist derzeit das Verfahren der ersten Wahl in der Diagnostik von Hirntumoren. In vielen Situationen sind jedoch die Möglichkeiten der Standard-MRT durch eine eingeschränkte Beurteilung des Tumorgewebes (z. B. Identifikation von kontrastmittelnegativen Tumoranteilen) und in der Differenzierung von Tumorgewebe zu unspezifischen Gewebeveränderungen (z. B. perifokales Ödem, therapieassoziierte Gliosen) eingeschränkt.
Die Positronenemissionstomografie (PET) mit radioaktiv markierten Aminosäuren, insbesondere mit O-(2-[18F]-Fluorethyl)-L-Tyrosin (FET) und [11C]-Methionin (MET), haben sich in Kombination mit der MRT in den letzten Jahren in einer Vielzahl von Studien als sehr leistungsstark erwiesen. Der entscheidende Vorteil der Aminosäure-PET ist die Darstellung des stoffwechselaktiven Hirntumors unabhängig von der Permeabilität der Blut-Hirn-Schranke. Dadurch ist in der Diagnostik von Gliomen eine sehr gute Beurteilung der Lokalisation, Ausdehnung und Heterogenität des Tumors möglich. In der Therapieplanung wird die Aminosäure-PET daher zur Festlegung des Biopsieorts und zur Planung des Resektionsausmaßes sowie des Strahlentherapiefelds verwendet. Während des Therapiemonitorings ist nach einer Radio-/Chemotherapie eine Unterscheidung zwischen einer Tumorprogression von einer posttherapeutischen Veränderung (z. B. Pseudoprogression, Radionekrose) und einer Response von einer Pseudoresponse im Verlauf einer antiangiogenen Therapie möglich.
Die Vorteile von FET im Vergleich zu MET liegen in der deutlich längeren Halbwertszeit von 18Fluor, wodurch FET an verschiedene Zentren verteilt werden kann. Zusätzlich zeigt FET eine geringere Aufnahme in entzündliche Läsionen bzw. inflammatorische Zellen als MET.
Durch die rasch zunehmende Bedeutung und Verwendung der Aminosäure-PET in den meisten neuroonkologischen Zentren sollen in dieser Übersichtsarbeit die „Pitfalls“ insbesondere in der FET-PET-Diagnostik von Hirntumoren systematisch dargestellt werden. Insbesondere bei der Erstdiagnostik von solitären Raumforderungen mit oder ohne (ringförmige) Kontrastmittelaufnahme in der MRT sind neben hirneigenen Tumoren auch entzündliche, ischämische, hämorrhagische oder traumatische Läsionen zu berücksichtigen.
Abstract
In clinical neuro-oncology structural magnetic resonance imaging (MRI) is currently the investigation of choice for diagnosing brain tumors. In many situations, however, the capacity of MRI identifying non-enhancing tumor or differentiating neoplastic tissue from unspecific treatment-related changes is limited.
In the last years positron emission tomography (PET) using radiolabeled amino acids such as O-(2-[18F]-Fluoroethyl)-L-tyrosine (FET) and [11C]-methionine (MET) in combination with MRI has shown a great potential for a more accurate diagnosis of gliomas. The decisive advantage of amino acid PET is a tumor-specific tracer uptake independent from the blood-brain-barrier permeability. In the diagnostics of primary brain tumors the amino acid PET is able to describe the localization, extent and heterogeneity of the metabolic active tumor, which can be used for improved targeting of biopsy as well as planning of resection and radiotherapy by better visualization of tumor margins. Furthermore, following chemo-/radiotherapy amino acid PET can be used for distinguishing tumor recurrence from pseudoprogression and tumor response from pseudoresponse during antiangiogenic treatment.
The main advantage of FET compared to MET is the longer half-life of the [18F]-label, which allows a distribution on a wide clinical scale. In addition, FET uptake appears to be more specific for tumor tissue, because there is a higher uptake of MET in inflammatory cells and tissues.
Due to the rapidly growing importance and regular use of amino acid PET in many neuro-oncology centers the aim of this review is to highlight the “pitfalls” especially of FET PET diagnostics of brain tumors. The differential diagnosis of newly diagnosed solitary cerebral lesions with or without (circular) contrast enhancement on MRI includes different types of malignant brain tumors, as well as various benign, non-neoplastic lesions such as inflammatory, ischemic, hemorrhagic or traumatic lesions.
-
Literatur
- 1 Broer S, Brookes N. Transfer of glutamine between astrocytes and neurons. J Neurochem 2001; 77: 705-719
- 2 Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 1990; 70: 43-77
- 3 del Amo EM, Urtti A, Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 2008; 35: 161-174
- 4 Dethy S, Goldman S, Blecic S et al. Carbon-11-methionine and fluorine-18-FDG PET study in brain hematoma. J Nucl Med 1994; 35: 1162-1166
- 5 Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain research bulletin 1999; 49: 377-391
- 6 Filss CP, Galldiks N, Stoffels G et al. Comparison of 18F-FET PET and Perfusion-Weighted MR Imaging: A PET/MR Imaging Hybrid Study in Patients with Brain Tumors. J Nucl Med 2014; 55: 540-545
- 7 Floeth FW, Pauleit D, Sabel M et al. 18F-FET PET differentiation of ring-enhancing brain lesions. J Nucl Med 2006; 47: 776-782
- 8 Floeth FW, Pauleit D, Wittsack HJ et al. Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg 2005; 102: 318-327
- 9 Gaertner FC, Kebir S, Niessen M et al. Entzündliche Läsionen bei Patienten mit multipler Sklerose weisen eine niedrige Aufnahme von Fluoroethyltyrosin (FET) auf. 53 Jahrestagung der DGN 2015 Abstract V39
- 10 Galldiks N, Dunkl V, Stoffels G et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging 2015; 42: 685-695
- 11 Galldiks N, Rapp M, Stoffels G et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging 2013; 40: 22-33
- 12 Habermeier A, Graf J, Sandhofer BF et al. System L amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-L-tyrosine (FET). Amino acids 2015; 47: 335-344
- 13 Hegi ME, Diserens AC, Gorlia T et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352: 997-1003
- 14 Hutterer M, Nowosielski M, Putzer D et al. [18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol 2013; 15: 341-351
- 15 Hutterer M, Nowosielski M, Putzer D et al. O-(2-18F-Fluoroethyl)-L-Tyrosine PET Predicts Failure of Antiangiogenic Treatment in Patients with Recurrent High-Grade Glioma. J Nucl Med 2011; 52: 856-864
- 16 Kaim AH, Weber B, Kurrer MO et al. 18)F-FDG and (18)F-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol Imaging 2002; 29: 648-654
- 17 Kanai Y, Segawa H, Miyamoto K et al. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 1998; 273: 23629-23632
- 18 Kunz M, Thon N, Eigenbrod S et al. Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol 2011; 13: 307-316
- 19 Lahoutte T, Caveliers V, Camargo SM et al. SPECT and PET amino acid tracer influx via system L (h4F2hc-hLAT1) and its transstimulation. J Nucl Med 2004; 45: 1591-1596
- 20 Langen KJ, Hamacher K, Weckesser M et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2006; 33: 287-294
- 21 Langen KJ, Jarosch M, Muhlensiepen H et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol 2003; 30: 501-508
- 22 Lee TS, Ahn SH, Moon BS et al. Comparison of 18F-FDG, 18F-FET and 18F-FLT for differentiation between tumor and inflammation in rats. Nucl Med Biol 2009; 36: 681-686
- 23 Louis DN, Ohgaki H, Wiestler OD et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97-109
- 24 Mannion BA, Kolesnikova TV, Lin SH et al. The light chain of CD98 is identified as E16/TA1 protein. J Biol Chem 1998; 273: 33127-33129
- 25 Mastroberardino L, Spindler B, Pfeiffer R et al. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 1998; 395: 288-291
- 26 Meier C, Ristic Z, Klauser S et al. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J 2002; 21: 580-589
- 27 Nakamura E, Sato M, Yang H et al. 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer. J Biol Chem 1999; 274: 3009-3016
- 28 Ogawa T, Hatazawa J, Inugami A et al. Carbon-11-methionine PET evaluation of intracerebral hematoma: distinguishing neoplastic from non-neoplastic hematoma. J Nucl Med 1995; 36: 2175-2179
- 29 Ohgaki H, Kleihues P. Genetic profile of astrocytic and oligodendroglial gliomas. Brain Tumor Pathol 2011; 28: 177-183
- 30 Ohkame H, Masuda H, Ishii Y et al. Expression of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (4F2hc) in liver tumor lesions of rat models. Journal of surgical oncology 2001; 78: 265-271 discussion 271-262
- 31 Oxender DL, Christensen HN. Evidence for two types of mediation of neutral and amino-acid transport in Ehrlich cells. Nature 1963; 197: 765-767
- 32 Pauleit D, Floeth F, Hamacher K et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687
- 33 Pauleit D, Floeth F, Herzog H et al. Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-L-tyrosine. Eur J Nucl Med Mol Imaging 2003; 30: 519-524
- 34 Pichler R, Dunzinger A, Wurm G et al. Is there a place for FET PET in the initial evaluation of brain lesions with unknown significance?. Eur J Nucl Med Mol Imaging 2010; 37: 1521-1528
- 35 Piroth MD, Prasath J, Willuweit A et al. Uptake of O-(2-[18F]fluoroethyl)-L-tyrosine in reactive astrocytosis in the vicinity of cerebral gliomas. Nucl Med Biol 2013; 40: 795-800
- 36 Pochini L, Scalise M, Galluccio M et al. Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Front Chem 2014; 2: 61
- 37 Popperl G, Gotz C, Rachinger W et al. Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004; 31: 1464-1470
- 38 Popperl G, Kreth FW, Herms J et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods?. J Nucl Med 2006; 47: 393-403
- 39 Popperl G, Kreth FW, Mehrkens JH et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 2007; 34: 1933-1942
- 40 Rachinger W, Goetz C, Popperl G et al. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 2005; 57: 505-511 discussion 505-511
- 41 Rau FC, Weber WA, Wester HJ et al. O-(2-[(18)F]Fluoroethyl)- L-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging 2002; 29: 1039-1046
- 42 Rottenburger C, Doostkam S, Prinz M et al. Interesting image. Amino acid PET tracer accumulation in cortical ischemia: an interesting case. Clin Nucl Med 2010; 35: 907-908
- 43 Salber D, Stoffels G, Oros-Peusquens AM et al. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine and L-3H-methionine uptake in cerebral hematomas. J Nucl Med 2010; 51: 790-797
- 44 Salber D, Stoffels G, Pauleit D et al. Differential uptake of [18F]FET and [3H]l-methionine in focal cortical ischemia. Nucl Med Biol 2006; 33: 1029-1035
- 45 Salber D, Stoffels G, Pauleit D et al. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. J Nucl Med 2007; 48: 2056-2062
- 46 Segawa H, Fukasawa Y, Miyamoto K et al. Identification and functional characterization of a Na + -independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 1999; 274: 19745-19751
- 47 Shennan DB, Thomson J. Inhibition of system L (LAT1/CD98hc) reduces the growth of cultured human breast cancer cells. Oncology reports 2008; 20: 885-889
- 48 Spaeth N, Wyss MT, Weber B et al. Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J Nucl Med 2004; 45: 1931-1938
- 49 Stober B, Tanase U, Herz M et al. Differentiation of tumour and inflammation: characterisation of [methyl-3H]methionine (MET) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur J Nucl Med Mol Imaging 2006; 33: 932-939
- 50 Stupp R, Hegi ME, Mason WP et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10: 459-466
- 51 Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987-996
- 52 Taal W, Oosterkamp HM, Walenkamp AM et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol 2014; 15: 943-953
- 53 Weckesser M, Langen KJ, Rickert CH et al. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 2005; 32: 422-429
- 54 Wester HJ, Herz M, Weber W et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 1999; 40: 205-212
- 55 Yanagida O, Kanai Y, Chairoungdua A et al. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta 2001; 1514: 291-302