Journal of Pediatric Biochemistry 2015; 05(02): 041-050
DOI: 10.1055/s-0035-1564573
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Early-Life Gut Microbial Composition

Ravinder Nagpal
1   Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
,
Yuichiro Yamashiro
1   Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
› Author Affiliations
Further Information

Publication History

30 June 2015

17 July 2015

Publication Date:
15 September 2015 (online)

Abstract

The human intestinal microbiota plays a significant role in host metabolism and physiology. The early-life microbiota undergoes subtle changes, mainly during the first 1,000 days, and can be affected by many factors such as mode of delivery and feeding, maternal diet, family structure, disease, medication, and environment. While acquisition of particular microbial arrays is associated with healthy infants and adults, an altered microbiota is linked with various illnesses. For instance, a disrupted neonatal microbiome due to cesarean or excessive antibiotic exposure may result in increased predisposition to allergic, autoimmune, and metabolic diseases in later life. Although mechanisms underlying these correlations are not yet fully elucidated, emerging evidences are indicating that the early-life microbial composition is critical to health. Hence, its more comprehensive understanding can offer great avenues for health interventions.

 
  • References

  • 1 Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol 2007; 5 (7) e177
  • 2 Gill SR, Pop M, Deboy RT , et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312 (5778) 1355-1359
  • 3 Tsai F, Coyle WJ. The microbiome and obesity: is obesity linked to our gut flora?. Curr Gastroenterol Rep 2009; 11 (4) 307-313
  • 4 Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012; 489 (7415) 231-241
  • 5 Young VB. The intestinal microbiota in health and disease. Curr Opin Gastroenterol 2012; 28 (1) 63-69
  • 6 Kerr CA, Grice DM, Tran CD , et al. Early life events influence whole-of-life metabolic health via gut microflora and gut permeability. Crit Rev Microbiol 2015; 41 (3) 326-340
  • 7 Jost T, Lacroix C, Braegger C, Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr 2013; 110 (7) 1253-1262
  • 8 Kelly D, King T, Aminov R. Importance of microbial colonization of the gut in early life to the development of immunity. Mutat Res 2007; 622 (1–2) 58-69
  • 9 Othman M, Agüero R, Lin HC. Alterations in intestinal microbial flora and human disease. Curr Opin Gastroenterol 2008; 24 (1) 11-16
  • 10 Rook GA. Hygiene hypothesis and autoimmune diseases. Clin Rev Allergy Immunol 2012; 42 (1) 5-15
  • 11 Koenig JE, Spor A, Scalfone N , et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 2011; 108 (1) (Suppl. 01) 4578-4585
  • 12 Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014; 6: 237ra65
  • 13 Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol 2013; 11 (8) e1001631
  • 14 Bergström A, Skov TH, Bahl MI , et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol 2014; 80 (9) 2889-2900
  • 15 Rahman MS, Nagata S, Matsuda K , et al. Molecular biology studies of the origin of Bifidobacterium and Lactobacillus in neonatal feces. Int J Probiotics Prebiotics 2012; 7 (2) 91-98
  • 16 Tsuji H, Oozeer R, Matsuda K , et al. Molecular monitoring of the development of intestinal microbiota in Japanese infants. Benef Microbes 2012; 3 (2) 113-125
  • 17 Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev 2010; 90 (3) 859-904
  • 18 Faith JJ, Guruge JL, Charbonneau M , et al. The long-term stability of the human gut microbiota. Science 2013; 341 (6141) 1237439
  • 19 Penders J, Thijs C, Vink C , et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006; 118 (2) 511-521
  • 20 Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr 2009; 98 (2) 229-238
  • 21 Jiménez E, Fernández L, Marín ML , et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 2005; 51 (4) 270-274
  • 22 Jiménez E, Marín ML, Martín R , et al. Is meconium from healthy newborns actually sterile?. Res Microbiol 2008; 159 (3) 187-193
  • 23 Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 2010; 92 (5) 1023-1030
  • 24 Luoto R, Laitinen K, Nermes M, Isolauri E. Impact of maternal probiotic-supplemented dietary counselling on pregnancy outcome and prenatal and postnatal growth: a double-blind, placebo-controlled study. Br J Nutr 2010; 103 (12) 1792-1799
  • 25 Grönlund MM, Grześkowiak Ł, Isolauri E, Salminen S. Influence of mother's intestinal microbiota on gut colonization in the infant. Gut Microbes 2011; 2 (4) 227-233
  • 26 Putignani L, Del Chierico F, Petrucca A, Vernocchi P, Dallapiccola B. The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr Res 2014; 76 (1) 2-10
  • 27 Le Huërou-Luron I, Blat S, Boudry G. Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev 2010; 23 (1) 23-36
  • 28 Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 2010; 156 (Pt 11): 3329-3341
  • 29 Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 2011; 17 (6) 478-482
  • 30 Dominguez-Bello MG, Costello EK, Contreras M , et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010; 107 (26) 11971-11975
  • 31 Eggesbø M, Botten G, Stigum H, Nafstad P, Magnus P. Is delivery by cesarean section a risk factor for food allergy?. J Allergy Clin Immunol 2003; 112 (2) 420-426
  • 32 Fallani M, Young D, Scott J , et al; Other Members of the INFABIO Team. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 2010; 51 (1) 77-84
  • 33 De Filippo C, Cavalieri D, Di Paola M , et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010; 107 (33) 14691-14696
  • 34 Salminen S, Gibson GR, McCartney AL, Isolauri E. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 2004; 53 (9) 1388-1389
  • 35 Decker E, Engelmann G, Findeisen A , et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics 2010; 125 (6) e1433-e1440
  • 36 Cardwell CR, Stene LC, Joner G , et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia 2008; 51 (5) 726-735
  • 37 Bager P, Simonsen J, Nielsen NM, Frisch M. Cesarean section and offspring's risk of inflammatory bowel disease: a national cohort study. Inflamm Bowel Dis 2012; 18 (5) 857-862
  • 38 Huh SY, Rifas-Shiman SL, Zera CA , et al. Delivery by caesarean section and risk of obesity in preschool age children: a prospective cohort study. Arch Dis Child 2012; 97 (7) 610-616
  • 39 Cho CE, Norman M. Cesarean section and development of the immune system in the offspring. Am J Obstet Gynecol 2013; 208 (4) 249-254
  • 40 Azad MB, Konya T, Maughan H , et al; CHILD Study Investigators. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 2013; 185 (5) 385-394
  • 41 Makino H, Kushiro A, Ishikawa E , et al. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant's microbiota. PLoS ONE 2013; 8 (11) e78331
  • 42 Marques TM, Wall R, Ross RP, Fitzgerald GF, Ryan CA, Stanton C. Programming infant gut microbiota: influence of dietary and environmental factors. Curr Opin Biotechnol 2010; 21 (2) 149-156
  • 43 Fallani M, Amarri S, Uusijarvi A , et al; INFABIO team. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 2011; 157 (Pt 5) 1385-1392
  • 44 Musilova S, Rada V, Vlkova E, Bunesova V, Nevoral J. Colonisation of the gut by bifidobacteria is much more common in vaginal deliveries than Caesarean sections. Acta Paediatr 2015; 104 (4) e184-e186
  • 45 Huurre A, Kalliomäki M, Rautava S, Rinne M, Salminen S, Isolauri E. Mode of delivery - effects on gut microbiota and humoral immunity. Neonatology 2008; 93 (4) 236-240
  • 46 Jakobsson HE, Abrahamsson TR, Jenmalm MC , et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 2014; 63 (4) 559-566
  • 47 Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A meta-analysis of the association between Caesarean section and childhood asthma. Clin Exp Allergy 2008; 38 (4) 629-633
  • 48 Barros FC, Matijasevich A, Hallal PC , et al. Cesarean section and risk of obesity in childhood, adolescence, and early adulthood: evidence from 3 Brazilian birth cohorts. Am J Clin Nutr 2012; 95 (2) 465-470
  • 49 Benno Y, Sawada K, Mitsuoka T. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol 1984; 28 (9) 975-986
  • 50 Roger LC, McCartney AL. Longitudinal investigation of the faecal microbiota of healthy full-term infants using fluorescence in situ hybridization and denaturing gradient gel electrophoresis. Microbiology 2010; 156 (Pt 11): 3317-3328
  • 51 Ardeshir A, Narayan NR, Méndez-Lagares G , et al. Breast-fed and bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems. Sci Transl Med 2014; 6 (252) 252ra120
  • 52 Myles IA, Fontecilla NM, Janelsins BM, Vithayathil PJ, Segre JA, Datta SK. Parental dietary fat intake alters offspring microbiome and immunity. J Immunol 2013; 191 (6) 3200-3209
  • 53 Ma J, Prince AL, Bader D , et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat Commun 2014; 5: 3889-3913
  • 54 Martín R, Heilig HG, Zoetendal EG , et al. Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res Microbiol 2007; 158 (1) 31-37
  • 55 Collado MC, Delgado S, Maldonado A, Rodríguez JM. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett Appl Microbiol 2009; 48 (5) 523-528
  • 56 Makino H, Kushiro A, Ishikawa E , et al. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol 2011; 77 (19) 6788-6793
  • 57 Martín V, Maldonado-Barragán A, Moles L , et al. Sharing of bacterial strains between breast milk and infant feces. J Hum Lact 2012; 28 (1) 36-44
  • 58 Fan W, Huo G, Li X, Yang L, Duan C. Impact of diet in shaping gut microbiota revealed by a comparative study in infants during the six months of life. J Microbiol Biotechnol 2014; 24 (2) 133-143
  • 59 Stark PL, Lee A. The microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life. J Med Microbiol 1982; 15 (2) 189-203
  • 60 Tonooka T, Sakata S, Kitahara M , et al. Detection and quantification of four species of the genus Clostridium in infant feces. Microbiol Immunol 2005; 49 (11) 987-992
  • 61 Thompson AL. Developmental origins of obesity: early feeding environments, infant growth, and the intestinal microbiome. Am J Hum Biol 2012; 24 (3) 350-360
  • 62 Dicksved J, Flöistrup H, Bergström A , et al. Molecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl Environ Microbiol 2007; 73 (7) 2284-2289
  • 63 Sepp E, Julge K, Vasar M, Naaber P, Björksten B, Mikelsaar M. Intestinal microflora of Estonian and Swedish infants. Acta Paediatr 1997; 86 (9) 956-961
  • 64 Mueller S, Saunier K, Hanisch C , et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 2006; 72 (2) 1027-1033
  • 65 Grześkowiak Ł, Collado MC, Mangani C , et al. Distinct gut microbiota in southeastern African and northern European infants. J Pediatr Gastroenterol Nutr 2012; 54 (6) 812-816
  • 66 Adlerberth I, Strachan DP, Matricardi PM , et al. Gut microbiota and development of atopic eczema in 3 European birth cohorts. J Allergy Clin Immunol 2007; 120 (2) 343-350
  • 67 Strachan DP. Hay fever, hygiene, and household size. BMJ 1989; 299 (6710) 1259-1260
  • 68 Strachan DP. Family size, infection and atopy: the first decade of the “hygiene hypothesis”. Thorax 2000; 55 (Suppl. 01) S2-S10
  • 69 McKeever TM, Lewis SA, Smith C, Hubbard R. The importance of prenatal exposures on the development of allergic disease: a birth cohort study using the West Midlands General Practice Database. Am J Respir Crit Care Med 2002; 166 (6) 827-832
  • 70 Savino F, Roana J, Mandras N, Tarasco V, Locatelli E, Tullio V. Faecal microbiota in breast-fed infants after antibiotic therapy. Acta Paediatr 2011; 100 (1) 75-78
  • 71 Engelbrektson A, Korzenik JR, Pittler A , et al. Probiotics to minimize the disruption of faecal microbiota in healthy subjects undergoing antibiotic therapy. J Med Microbiol 2009; 58 (Pt 5) 663-670
  • 72 WHO/FAO. Health and nutritional properties of probiotics in food including powder milk with lactic acid bacteria. FAO and WHO Joint and Expert Committee Report. Available at: ftp://ftp.fao.org/es/esn/food/probioreporten
  • 73 Sanders ME, Guarner F, Guerrant R , et al. An update on the use and investigation of probiotics in health and disease. Gut 2013; 62 (5) 787-796
  • 74 King S, Glanville J, Sanders ME, Fitzgerald A, Varley D. Effectiveness of probiotics on the duration of illness in healthy children and adults who develop common acute respiratory infectious conditions: a systematic review and meta-analysis. Br J Nutr 2014; 112 (1) 41-54
  • 75 Tuohy KM, Fava F, Viola R. ‘The way to a man's heart is through his gut microbiota’—dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nutr Soc 2014; 73 (2) 172-185
  • 76 Van Loo JA. Prebiotics promote good health: the basis, the potential, and the emerging evidence. J Clin Gastroenterol 2004; 38 (6, Suppl): S70-S75
  • 77 Childs CE, Röytiö H, Alhoniemi E , et al. Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: a double-blind, placebo-controlled, randomised, factorial cross-over study. Br J Nutr 2014; 24: 1-12
  • 78 Kelishadi R, Farajian S, Safavi M, Mirlohi M, Hashemipour M. A randomized triple-masked controlled trial on the effects of synbiotics on inflammation markers in overweight children. J Pediatr (Rio J) 2014; 90 (2) 161-168
  • 79 Vyas U, Ranganathan N. Probiotics, prebiotics, and synbiotics: gut and beyond. Gastroenterol Res Pract 2012; 2012: 872716
  • 80 Johnston BC, Goldenberg JZ, Vandvik PO, Sun X, Guyatt GH. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev 2011; 11 (11) CD004827
  • 81 Kalliomäki M, Antoine JM, Herz U, Rijkers GT, Wells JM, Mercenier A. Guidance for substantiating the evidence for beneficial effects of probiotics: prevention and management of allergic diseases by probiotics. J Nutr 2010; 140 (3) 713S-721S
  • 82 Wolvers D, Antoine JM, Myllyluoma E, Schrezenmeir J, Szajewska H, Rijkers GT. Guidance for substantiating the evidence for beneficial effects of probiotics: prevention and management of infections by probiotics. J Nutr 2010; 140 (3) 698S-712S
  • 83 Luoto R, Kalliomäki M, Laitinen K, Isolauri E. The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes 2010; 34 (10) 1531-1537
  • 84 Johannsen H, Prescott SL. Practical prebiotics, probiotics and synbiotics for allergists: how useful are they?. Clin Exp Allergy 2009; 39 (12) 1801-1814
  • 85 Luoto R, Isolauri E, Lehtonen L. Safety of Lactobacillus GG probiotic in infants with very low birth weight: twelve years of experience. Clin Infect Dis 2010; 50 (9) 1327-1328
  • 86 Boehm G, Stahl B, Jelinek J, Knol J, Miniello V, Moro GE. Prebiotic carbohydrates in human milk and formulas. Acta Paediatr Suppl 2005; 94 (449) 18-21
  • 87 Knol J, Scholtens P, Kafka C , et al. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J Pediatr Gastroenterol Nutr 2005; 40 (1) 36-42
  • 88 Jeurink PV, van Esch BCAM, Rijnierse A, Garssen J, Knippels LMJ. Mechanisms underlying immune effects of dietary oligosaccharides. Am J Clin Nutr 2013; 98 (2) 572S-577S
  • 89 Picaud JC, Chapalain V, Paineau D, Zourabichvili O, Bornet FR, Duhamel JF. Incidence of infectious diseases in infants fed follow-on formula containing synbiotics: an observational study. Acta Paediatr 2010; 99 (11) 1695-1700
  • 90 Sazawal S, Dhingra U, Hiremath G , et al. Prebiotic and probiotic fortified milk in prevention of morbidities among children: community-based, randomized, double-blind, controlled trial. PLoS ONE 2010; 5 (8) e12164
  • 91 Jacquot A, Neveu D, Aujoulat F , et al. Dynamics and clinical evolution of bacterial gut microflora in extremely premature patients. J Pediatr 2011; 158 (3) 390-396
  • 92 Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour—epigenetic regulation of the gut-brain axis. Genes Brain Behav 2014; 13 (1) 69-86
  • 93 Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9 (5) 313-323
  • 94 Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. Int J Obes 2013; 37 (1) 16-23
  • 95 Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 2012; 10 (11) 735-742
  • 96 Forsythe P, Kunze WA. Voices from within: gut microbes and the CNS. Cell Mol Life Sci 2013; 70 (1) 55-69
  • 97 Knowles CH, Lindberg G, Panza E, De Giorgio R. New perspectives in the diagnosis and management of enteric neuropathies. Nat Rev Gastroenterol Hepatol 2013; 10 (4) 206-218
  • 98 Sherman MP. New concepts of microbial translocation in the neonatal intestine: mechanisms and prevention. Clin Perinatol 2010; 37 (3) 565-579
  • 99 Bereswill S, Kühl AA, Alutis M , et al. The impact of Toll-like-receptor-9 on intestinal microbiota composition and extra-intestinal sequelae in experimental Toxoplasma gondii induced ileitis. Gut Pathog 2014; 6: 19-33
  • 100 Hansen J, Gulati A, Sartor RB. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr Opin Gastroenterol 2010; 26 (6) 564-571
  • 101 Wadhawan R, Oh W, Hintz SR , et al; NICHD Neonatal Research Network. Neurodevelopmental outcomes of extremely low birth weight infants with spontaneous intestinal perforation or surgical necrotizing enterocolitis. J Perinatol 2014; 34 (1) 64-70
  • 102 Douglas-Escobar M, Elliott E, Neu J. Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr 2013; 167 (4) 374-379
  • 103 Saulnier DM, Ringel Y, Heyman MB , et al. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes 2013; 4 (1) 17-27
  • 104 Underwood MA. Human milk for the premature infant. Pediatr Clin North Am 2013; 60 (1) 189-207
  • 105 Tarnow-Mordi W, Soll RF. Probiotic supplementation in preterm infants: it is time to change practice. J Pediatr 2014; 164 (5) 959-960
  • 106 Keunen K, van Elburg RM, van Bel F, Benders MJNL. Impact of nutrition on brain development and its neuroprotective implications following preterm birth. Pediatr Res 2015; 77 (1–2) 148-155
  • 107 Sherman MP, Zaghouani H, Niklas V. Gut microbiota, the immune system, and diet influence the neonatal gut-brain axis. Pediatr Res 2015; 77 (1–2) 127-135
  • 108 Martino DJ, Prescott SL. Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease. Allergy 2010; 65 (1) 7-15
  • 109 Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347 (12) 911-920
  • 110 Carlisle EM, Morowitz MJ. The intestinal microbiome and necrotizing enterocolitis. Curr Opin Pediatr 2013; 25 (3) 382-387
  • 111 Wang M, Karlsson C, Olsson C , et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema. J Allergy Clin Immunol 2008; 121 (1) 129-134
  • 112 Bisgaard H, Li N, Bonnelykke K , et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 2011; 128 (3) 646-52.e1 , 5
  • 113 Meurens F, Berri M, Siggers RH , et al. Commensal bacteria and expression of two major intestinal chemokines, TECK/CCL25 and MEC/CCL28, and their receptors. PLoS ONE 2007; 2 (7) e677
  • 114 Oyama N, Sudo N, Sogawa H, Kubo C. Antibiotic use during infancy promotes a shift in the T(H)1/T(H)2 balance toward T(H)2-dominant immunity in mice. J Allergy Clin Immunol 2001; 107 (1) 153-159
  • 115 Sjögren YM, Tomicic S, Lundberg A , et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin Exp Allergy 2009; 39 (12) 1842-1851
  • 116 Schwartz S, Friedberg I, Ivanov IV , et al. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol 2012; 13 (4) r32-r48
  • 117 Lundell AC, Björnsson V, Ljung A , et al. Infant B cell memory differentiation and early gut bacterial colonization. J Immunol 2012; 188 (9) 4315-4322
  • 118 Kozyrskyj AL, Bahreinian S, Azad MB. Early life exposures: impact on asthma and allergic disease. Curr Opin Allergy Clin Immunol 2011; 11 (5) 400-406
  • 119 Penders J, Gerhold K, Stobberingh EE , et al. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J Allergy Clin Immunol 2013; 132 (3) 601-607.e8
  • 120 Yap GC, Loo EX, Aw M, Lu Q, Shek LP, Lee BW. Molecular analysis of infant fecal microbiota in an Asian at-risk cohort-correlates with infant and childhood eczema. BMC Res Notes 2014; 7: 166-172
  • 121 Penders J, Kummeling I, Thijs C. Infant antibiotic use and wheeze and asthma risk: a systematic review and meta-analysis. Eur Respir J 2011; 38 (2) 295-302
  • 122 Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol 2010; 105 (12) 2687-2692
  • 123 Hwang JS, Im CR, Im SH. Immune disorders and its correlation with gut microbiome. Immune Netw 2012; 12 (4) 129-138
  • 124 Kondrashova A, Hyöty H. Role of viruses and other microbes in the pathogenesis of type 1 diabetes. Int Rev Immunol 2014; 33 (4) 284-295