Subscribe to RSS
DOI: 10.1055/s-0035-1567024
Bergtouren als Präventivmittel von kardiovaskulären Erkrankungen?
Mountaineering for the Prevention of Cardiovascular Diseases?Publication History
Publication Date:
25 April 2016 (online)
Zusammenfassung
Problemstellung: Die Bevölkerung westlicher Länder wird immer dicker, was insbesondere auch auf die körperliche Inaktivität zurückzuführen ist und entsprechend für kardiovaskuläre Erkrankungen prädisponiert. Gerade Bergtouren respektive das Mehrseillängenklettern scheinen in erster Approximation aufgrund der mehrstündigen Dauer und der niedrigen Intensität protektive Effekte auf den Metabolismus und das kardiovaskuläre System zu haben, da die oft geringe Intensität eine kontinuierliche physische Stimulation bewirkt.
Methoden: Acht Alpinisten in vier Zweier-Seilschaften mit guter Grundkondition und regelmäßiger Kletteraktivität absolvierten eine Mehrseillängenroute (Route via Fritz am Pfriendler 2501 m.ü.M./Gebiet Steingletscher/Sustenpass Kanton Bern/Schweiz) mit total sieben Seillängen im Bereich 4b–5c+ (French Scale). Alle Alpinisten trugen während der ganzen Tour Herzfrequenzmessgeräte, welche eine anschließende Analyse des Verlaufs erlaubten.
Ergebnisse: Die Werte der Herzfrequenz stiegen während dem Durchsteigen einer einzelnen Kletterroute durchschnittlich jeweils von 86 ± 18 auf 135 ± 4 Schläge pro Minute. Die durchschnittliche Herzfrequenz betrug 126 ± 2 Schläge, was durchschnittlich 67 % der maximalen Herzfrequenz entspricht. Die ganze Tour dauerte 5 h 55 min wobei eine durchschnittliche Herzfrequenz von 108 ± 9 Schlägen resultiere, was einen Durchschnitt von 56 ± 5 % der maximalen Herzfrequenz ergibt.
Diskussion: Die Resultate verdeutlichen die niedrige Intensität einer Mehrseillängenbergtour und implizieren eine Stimulation des Fettstoffwechsels, was entsprechend das Potenzial von Bergtouren als präventives Mittel von metabolischen Erkrankungen aufzeigt.
Abstract
Introduction: People in Western countries are gaining more and more weight, which is mainly due to a lack of physical activity predisposing to cardiovascular illnesses. Mountaineering, in particular multi-pitch climbing, seems to have protective effects on the metabolic and cardiovascular systems because it is a low-intensity activity lasting several hours, which leads to continuous physical stimulation.
Methods: Eight climbers in four two-person rope teams with a good leisure sports level and regular climbing activity completed a multi-pitch climbing route (Pfriendler 2501 metres above sea level Via Fritz/Steingletscher/Sustenpass Canton of Bern/Switzerland) with a total of seven pitches with difficulties between 4b and 5c+ (French Scale). Climbers were monitored with heart rate gear during the whole climbing activity, which allowed us to analyse heart rates after climbing.
Results: During a single climbing pitch, heart rate values increased from 86 ± 18 to 135 ± 4 beats per minute on average. The average heart rate was 126 ± 2 beats per minute, which is 67 % of the maximum heart rate on average. The whole tour lasted 5 h 55 min with an average heart rate of 108 ± 9 beats per minute being measured, yielding an average of 56 ± 5 % of the maximum heart rate.
Discussion: The results point out the low intensity of multi-pitch mountaineering and imply a stimulation of fat metabolism, which highlights the potential of mountaineering for preventing metabolic diseases.
-
Literatur
- 1 Achten J, Jeukendrup AE. Maximal fat oxidation during exercise in trained men. Int J Sports Med 2003; 24: 603-608
- 2 Achten J, Jeukendrup AE. Relation between plasma lactate concentration and fat oxidation rates over a wide range of exercise intensities. Int J Sports Med 2004; 25: 32-37
- 3 Achten J, Gleeson M, Jeukendrup AE. Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc 2002; 34: 92-97
- 4 Achten J, Venables MC, Jeukendrup AE. Fat oxidation rates are higher during running compared with cycling over a wide range of intensities. Metabolism 2003; 52: 747-752
- 5 Baláš J, PanáIková M, Strejcová B et al. The Relationship between Climbing Ability and Physiological Responses to Rock Climbing. Scientific World Journal 2014; Article ID 678387,
- 6 Bertuzzi RC, Franchini E, Kokubun E et al. Energy system contributions in indoor rock climbing. European Journal of Applied Physiology 2007; 101: 293-300
- 7 Billat V, Palleja P, Charlaix T et al. Energy specificity of rock climbing and aerobic capacity in competitive sport rock climbers. J Sports Med Phys Fitness 1995; 35: 20-24
- 8 Booth J, Marino F, Hill C et al. Energy cost of sport rock climbing in elite performers. Br J Sports Med 1999; 33: 14-18
- 9 de Geus B, O’Driscoll SV, Meeusen R. Influence of climbing style on physiological responses during indoor rock climbing on routes with the same difficulty. European Journal of Applied Physiology 2006; 5: 489-496
- 10 Draper N, Ellis L, Bird EL et al. Effects of active Recovery on lactate concentration, heart rate, and RPE in Climbing. Journal of Sports Science and Medicine 2006; 5: 97-105
- 11 Draper N, Jones GA, Fryer S et al. Effect of anon-sight lead on the physiological and psychological responses to rock climbing. Journal of Sports Science and Medicine 2008; 7: 492-498
- 12 Fryer S, Draper N, Dickson T et al. Comparison of lactate sampling sites for rock climbing. Int J Sports Me 2011; 32 (06) 428-432
- 13 Giles LV, Rhodes EC, Taunton JE. The physiology of rock climbing. Sports Med 2006; 36 (06) 529-545
- 14 Groscurth A, Vetter W, Suter PM. Werden die Schweizer schwerer?. Praxis 2003; 92: 2191-2200
- 15 Hoppeler HH, Baum O, Mueller M et al. Molekulare Mechanismen der Anpassungsfähigkeit der Skelettmuskulatur. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie 2011; 59 (01) 6-13
- 16 Hoppeler HH, Howald H, Conley K et al. Endurance training in humans: Aerobic capacity and structure of skeletal muscle. J Appl Physiol 1985; 59: 320-327
- 17 Janot JM, Steffen JP, Porcari JP et al. Heartrate responses and perceived exertion for beginner and recreatonal sport climbers during indoor climbing. Journal of Exercise Physiology 2000; 3: 1-13
- 18 Jarque CM, Bera AK. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economic Letters 1980; 6 (03) 255-259
- 19 Kang J, Schweitzer JS, Hoffman JR. Effect of order of exercise intensity upon cardiorespiratory, metabolic, and perceptual responses during exercise of mixed intensity. Eur J Appl Physiol 2003; 90: 569-574
- 20 Knechtle B, Müller G, Willmann F et al. Fat oxidation in men and women endurance athletes in running and cycling. Int J Sports Med 2004; 25: 38-44
- 21 Knechtle B, Bircher S. Limitierende Faktoren der Fettverbrennung. Schweizerische Zeitschrift für «Sportmedizin und Sporttraumatologie» 2006; 54 (02) 51-56
- 22 Mermier CM, Jeffrey M, Janot M et al. Physiological and anthropometric determinants of sport climbing performance. BrJ Sports Med 2000; 34: 359-366
- 23 Popper KR. Logik der Forschung. Tübingen: Mohr Siebeck; 1969
- 24 Romijn JA, Coyle EF, Sidossis LS et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 1993; 265: E380-E391
- 25 Romijn JA, Coyle EF, Sidossis LS et al. Substrate metabolism during different exercise intensities in endurancetrained women. J Appl Physiol 2000; 88: 1707-1714
- 26 Watts PB, Newbury V, Sulentic J. Acute changes in handgrip strength, endurance, and blood lactate with sustained sport rock climbing. J Sports Med Phys Fitness 1996; 36: 255-260
- 27 Watts PB, Daggett M, Gallagher P et al. Metabolic response during sport rock climbing and the effects of active versus passive recovery. Int J Sports Med 2000; 21: 185-190
- 28 Williams ES, Taggart P, Carruthers M. Rock Climbing: Observations on heart rate and plasma catecholamine concentrations and the influence of Oxprenolol. BrJ Sports Med 1978; 12: 125-128
- 29 Wolfe RR. Fat metabolism in exercise. Adv Exp Med Biol 1998; 441: 147-156
- 30 Zintl F. Ausdauertraining: Grundlagen, Methoden, Trainingssteuerung. 4. Aufl. Wien, Zürich: BLV; 1997