Subscribe to RSS
DOI: 10.1055/s-0035-1569254
Optimization of Radiation Dose and Image Quality in Musculoskeletal CT: Emphasis on Iterative Reconstruction Techniques (Part 2)
Publication History
Publication Date:
22 December 2015 (online)
Abstract
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality of CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.
Keywords
computed tomography - image quality - radiation dose - iterative reconstruction techniques - musculoskeletal imaging* F.R. Verdun and F. Becce contributed equally to this work.
-
References
- 1 Roth TD, Buckwalter KA, Choplin RH. Musculoskeletal computed tomography: current technology and clinical applications. Semin Roentgenol 2013; 48 (2) 126-139
- 2 Larbi A, Viala P, Omoumi P , et al. Cartilaginous tumours and calcified lesions of the hand: a pictorial review. Diagn Interv Imaging 2013; 94 (4) 395-409
- 3 Lepage-Saucier M, Thiéry C, Larbi A, Lecouvet FE, Vande Berg BC, Omoumi P. Femoroacetabular impingement: normal values of the quantitative morphometric parameters in asymptomatic hips. Eur Radiol 2014; 24 (7) 1707-1714
- 4 Rydberg J, Buckwalter KA, Caldemeyer KS , et al. Multisection CT: scanning techniques and clinical applications. Radiographics 2000; 20 (6) 1787-1806
- 5 Omoumi P, Bae WC, Du J , et al. Meniscal calcifications: morphologic and quantitative evaluation by using 2D inversion-recovery ultrashort echo time and 3D ultrashort echo time 3.0-T MR imaging techniques—feasibility study. Radiology 2012; 264 (1) 260-268
- 6 Freire V, Becce F, Feydy A , et al. MDCT imaging of calcinosis in systemic sclerosis. Clin Radiol 2013; 68 (3) 302-309
- 7 Omoumi P, Vande Berg B, Simoni P, Lecouvet F. Value of CT arthrography in the assessment of cartilage pathology. In: Link T, ed. Cartilage Imaging: Significance, Techniques, and New Developments. New York, NY: Springer; 2011: 37-49
- 8 Omoumi P, Rubini A, Dubuc JE, Vande Berg BC, Lecouvet FE. Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation. Eur Radiol 2015; 25 (4) 961-969
- 9 Omoumi P, Mercier GA, Lecouvet F, Simoni P, Vande Berg BC. CT arthrography, MR arthrography, PET, and scintigraphy in osteoarthritis. Radiol Clin North Am 2009; 47 (4) 595-615
- 10 Omoumi P, Michoux N, Roemer FW, Thienpont E, Vande Berg BC. Cartilage thickness at the posterior medial femoral condyle is increased in femorotibial knee osteoarthritis: a cross-sectional CT arthrography study (Part 2). Osteoarthritis Cartilage 2015; 23 (2) 224-231
- 11 Omoumi P, Michoux N, Thienpont E, Roemer FW, Vande Berg BC. Anatomical distribution of areas of preserved cartilage in advanced femorotibial osteoarthritis using CT arthrography (Part 1). Osteoarthritis Cartilage 2015; 23 (1) 83-87
- 12 Omoumi P, Bafort A-C, Dubuc J-E, Malghem J, Vande Berg BC, Lecouvet FE. Evaluation of rotator cuff tendon tears: comparison of multidetector CT arthrography and 1.5-T MR arthrography. Radiology 2012; 264 (3) 812-822
- 13 Omoumi P, de Gheldere A, Leemrijse T , et al. Value of computed tomography arthrography with delayed acquisitions in the work-up of ganglion cysts of the tarsal tunnel: report of three cases. Skeletal Radiol 2010; 39 (4) 381-386
- 14 Cyteval C, Hamm V, Sarrabère MP, Lopez FM, Maury P, Taourel P. Painful infection at the site of hip prosthesis: CT imaging. Radiology 2002; 224 (2) 477-483
- 15 Becce F, Ben Salah Y, Verdun FR , et al. Computed tomography of the cervical spine: comparison of image quality between a standard-dose and a low-dose protocol using filtered back-projection and iterative reconstruction. Skeletal Radiol 2013; 42 (7) 937-945
- 16 Buckwalter KA. Optimizing imaging techniques in the postoperative patient. Semin Musculoskelet Radiol 2007; 11 (3) 261-272
- 17 McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiol Clin North Am 2009; 47 (1) 27-40
- 18 Prabhu V, Rosenkrantz AB. Imbalance of opinions expressed on Twitter relating to CT radiation risk: an opportunity for increased radiologist representation. AJR Am J Roentgenol 2015; 204 (1) W48–W51
- 19 Brody AS, Guillerman RP. Don't let radiation scare trump patient care: 10 ways you can harm your patients by fear of radiation-induced cancer from diagnostic imaging. Thorax 2014; 69 (8) 782-784
- 20 Doss M. COUNTERPOINT: should radiation dose from CT scans be a factor in patient care? No. Chest 2015; 147 (4) 874-877
- 21 McCunney RJ. POINT: should radiation dose from CT scans be a factor in patient care? Yes. Chest 2015; 147 (4) 872-874
- 22 Gervaise A, Teixeira P, Villani N, Lecocq S, Louis M, Blum A. CT dose optimisation and reduction in osteoarticular disease. Diagn Interv Imaging 2013; 94 (4) 371-388
- 23 Padole A, Ali Khawaja RD, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. AJR Am J Roentgenol 2015; 204 (4) W384-W92
- 24 Biswas D, Bible JE, Bohan M, Simpson AK, Whang PG, Grauer JN. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am 2009; 91 (8) 1882-1889
- 25 Omoumi P, Becce F, Ott J, Racine D, Verdun F. Optimization of radiation dose and image quality in musculoskeletal CT: emphasis on iterative reconstruction techniques (Part 1). Semin Musculoskelet Radiol 2015; 19 (5) 415-421
- 26 Jessen KA, Panzer W, Shrimpton PC , et al. EUR 16262: European Guidelines on Quality Criteria for Computed Tomography. Luxembourg: Office for Official Publications of the European Communities; 2000
- 27 Ehman EC, Yu L, Manduca A , et al. Methods for clinical evaluation of noise reduction techniques in abdominopelvic CT. Radiographics 2014; 34 (4) 849-862
- 28 Omoumi P, Becce F, Racine D , et al. Dual-energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging (Part 1). Semin Musculoskelet Radiol 2015; 19 (5) 431-437
- 29 Omoumi P, Verdun F, Guggenberger R, Andreisek G, Becce F. Dual-energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging (Part 2). Semin Musculoskeletal Radiol 2015; 19 (5) 438-445
- 30 Bonel HM, Jäger L, Frei KA , et al. Optimization of MDCT of the wrist to achieve diagnostic image quality with minimum radiation exposure. AJR Am J Roentgenol 2005; 185 (3) 647-654
- 31 Subhas N, Freire M, Primak AN , et al. CT arthrography: in vitro evaluation of single and dual energy for optimization of technique. Skeletal Radiol 2010; 39 (10) 1025-1031
- 32 Mulkens TH, Marchal P, Daineffe S , et al. Comparison of low-dose with standard-dose multidetector CT in cervical spine trauma. AJNR Am J Neuroradiol 2007; 28 (8) 1444-1450
- 33 Hoang JK, Yoshizumi TT, Nguyen G , et al. Variation in tube voltage for adult neck MDCT: effect on radiation dose and image quality. AJR Am J Roentgenol 2012; 198 (3) 621-627
- 34 Gnannt R, Winklehner A, Goetti R, Schmidt B, Kollias S, Alkadhi H. Low kilovoltage CT of the neck with 70 kVp: comparison with a standard protocol. AJNR Am J Neuroradiol 2012; 33 (6) 1014-1019
- 35 Bolte H, Sattler E-M, Jahnke T , et al. Low dose MDCT of the wrist—an ex vivo approach. Eur J Radiol 2011; 77 (2) 207-214
- 36 Simoni P, Leyder PP, Albert A , et al. Optimization of computed tomography (CT) arthrography of hip for the visualization of cartilage: an in vitro study. Skeletal Radiol 2014; 43 (2) 169-178
- 37 Gurung J, Khan MF, Maataoui A , et al. Multislice CT of the pelvis: dose reduction with regard to image quality using 16-row CT. Eur Radiol 2005; 15 (9) 1898-1905
- 38 Gleeson TG, Moriarty J, Shortt CP , et al. Accuracy of whole-body low-dose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlation of disease distribution with whole-body MRI (WBMRI). Skeletal Radiol 2009; 38 (3) 225-236
- 39 Chassang M, Grimaud A, Cucchi JM , et al. Can low-dose computed tomographic scan of the spine replace conventional radiography? An evaluation based on imaging myelomas, bone metastases, and fractures from osteoporosis. Clin Imaging 2007; 31 (4) 225-227
- 40 Horger M, Claussen CD, Bross-Bach U , et al. Whole-body low-dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography. Eur J Radiol 2005; 54 (2) 289-297
- 41 Kalra MK, Maher MM, Kamath RS , et al. Sixteen-detector row CT of abdomen and pelvis: study for optimization of Z-axis modulation technique performed in 153 patients. Radiology 2004; 233 (1) 241-249
- 42 Rizzo S, Kalra M, Schmidt B , et al. Comparison of angular and combined automatic tube current modulation techniques with constant tube current CT of the abdomen and pelvis. AJR Am J Roentgenol 2006; 186 (3) 673-679
- 43 Coakley FV, Gould R, Yeh BM, Arenson RL. CT radiation dose: what can you do right now in your practice?. AJR Am J Roentgenol 2011; 196 (3) 619-625
- 44 Suh YJ, Kim YJ, Hong SR , et al. Combined use of automatic tube potential selection with tube current modulation and iterative reconstruction technique in coronary CT angiography. Radiology 2013; 269 (3) 722-729
- 45 von Falck C, Galanski M, Shin H-O. Informatics in radiology: sliding-thin-slab averaging for improved depiction of low-contrast lesions with radiation dose savings at thin-section CT. Radiographics 2010; 30 (2) 317-326
- 46 Gervaise A, Osemont B, Lecocq S , et al. CT image quality improvement using Adaptive Iterative Dose Reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 2012; 22 (2) 295-301
- 47 Geyer LL, Körner M, Hempel R , et al. Evaluation of a dedicated MDCT protocol using iterative image reconstruction after cervical spine trauma. Clin Radiol 2013; 68 (7) e391-e396
- 48 Tobalem F, Dugert E, Verdun FR , et al. MDCT arthrography of the hip: value of the adaptive statistical iterative reconstruction technique and potential for radiation dose reduction. AJR Am J Roentgenol 2014; 203 (6) W665-W673
- 49 Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W. Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol 2010; 194 (1) 191-199
- 50 Fleischmann D, Boas FE. Computed tomography—old ideas and new technology. Eur Radiol 2011; 21 (3) 510-517
- 51 Willemink MJ, de Jong PA, Leiner T , et al. Iterative reconstruction techniques for computed tomography Part 1: technical principles. Eur Radiol 2013; 23 (6) 1623-1631
- 52 Omoumi P, Verdun FR, Ben Salah Y , et al. Low-dose multidetector computed tomography of the cervical spine: optimization of iterative reconstruction strength levels. Acta Radiol 2014; 55 (3) 335-344
- 53 Naoum C, Blanke P, Leipsic J. Iterative reconstruction in cardiac CT. J Cardiovasc Comput Tomogr 2015; 9 (4) 255-263