J Knee Surg 2016; 29(02): 126-137
DOI: 10.1055/s-0036-1571954
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Evaluation of Knee Ligament Mechanics Using Computational Models

Trent M. Guess
1   Department of Physical Therapy, University of Missouri, Columbia, Missouri
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
Swithin Razu
3   Department of Bioengineering, University of Missouri, Columbia, Missouri
,
Hamidreza Jahandar
3   Department of Bioengineering, University of Missouri, Columbia, Missouri
› Author Affiliations
Further Information

Publication History

01 April 2015

30 December 2015

Publication Date:
22 January 2016 (online)

Abstract

The steady maturation of computational biomechanics is providing the musculoskeletal health community with exciting avenues for enhancing orthopedic practice and rehabilitation. Computational knee models deliver tools that may improve the efficiency and outcomes of orthopedic research and methods through analysis of virtual surgeries and devices. They also provide insight into the interaction of knee structures and can predict what cannot be directly measured such as loading on our cartilage and ligaments during movement. This project created subject-specific computational knee models of two young adult females using magnetic resonance imaging-derived knee geometries and passive leg motion measured by a motion capture system. The knee models produced passive ligament lengthening patterns similar to experimental measurements available in the literature. The models also predicted cruciate ligament forces during passive flexion with and without applying anterior–posterior tibia forces that were similar to experimental measurements available in the literature. The biomechanics of the posterior oblique ligament (POL) and the anterior cruciate ligament bundles during combined tibia internal–external rotation torque and anterior–posterior forces through deep flexion were then examined. The study showed that the central arm of the POL: (1) produces a maximum constraining force when the knee is at full extension, (2) constrains internal tibial rotation at extension, and (3) constrains posterior tibial translation at extension. The POL reinforces the constraint of the anterior cruciate ligament to internal rotation at extension and provides constraint for posterior tibial translation at extension, a position where the posterior cruciate ligament provides minimal posterior translation constraint.

 
  • References

  • 1 Levangie PK, Norkin CC. Joint Structure and Function: A Comprehensive Analysis. 5th Ed. Philadelphia, PA: F.A. Davis Company; 2011
  • 2 Chhabra A, Starman JS, Ferretti M, Vidal AF, Zantop T, Fu FH. Anatomic, radiographic, biomechanical, and kinematic evaluation of the anterior cruciate ligament and its two functional bundles. J Bone Joint Surg Am 2006; 88 (Suppl. 04) 2-10
  • 3 DeFrate LE, Gill TJ, Li G. In vivo function of the posterior cruciate ligament during weightbearing knee flexion. Am J Sports Med 2004; 32 (8) 1923-1928
  • 4 Defrate LE, Nha KW, Papannagari R, Moses JM, Gill TJ, Li G. The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion. J Biomech 2007; 40 (8) 1716-1722
  • 5 LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L. The anatomy of the medial part of the knee. J Bone Joint Surg Am 2007; 89 (9) 2000-2010
  • 6 Cyr AJ, Maletsky LP. Unified quantification of variation in passive knee joint constraint. Proc Inst Mech Eng H 2014; 228 (5) 494-500
  • 7 Cook JL, Smith PA, Stannard JP , et al. A canine hybrid double-bundle model for study of arthroscopic ACL reconstruction. J Orthop Res 2015; 33 (8) 1171-1179
  • 8 Ford KR, Shapiro R, Myer GD, Van Den Bogert AJ, Hewett TE. Longitudinal sex differences during landing in knee abduction in young athletes. Med Sci Sports Exerc 2010; 42 (10) 1923-1931
  • 9 Kazemi M, Dabiri Y, Li LP. Recent advances in computational mechanics of the human knee joint. Comput Math Methods Med 2013; 2013: 718423
  • 10 Piazza SJ, Delp SL. Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J Biomech Eng 2001; 123 (6) 599-606
  • 11 Bei Y, Fregly BJ. Multibody dynamic simulation of knee contact mechanics. Med Eng Phys 2004; 26 (9) 777-789
  • 12 Blankevoort L, Huiskes R. Ligament-bone interaction in a three-dimensional model of the knee. J Biomech Eng 1991; 113 (3) 263-269
  • 13 Wismans J, Veldpaus F, Janssen J, Huson A, Struben P. A three-dimensional mathematical model of the knee-joint. J Biomech 1980; 13 (8) 677-685
  • 14 Caruntu DI, Hefzy MS. 3-D anatomically based dynamic modeling of the human knee to include tibio-femoral and patello-femoral joints. J Biomech Eng 2004; 126 (1) 44-53
  • 15 Guess TM, Razu S, Jahandar H, Stylianou A. Predicted loading on the menisci during gait: The effect of horn laxity. J Biomech 2015; 48 (8) 1490-1498
  • 16 Guess TM, Thiagarajan G, Kia M, Mishra M. A subject specific multibody model of the knee with menisci. Med Eng Phys 2010; 32 (5) 505-515
  • 17 Tibor LM, Marchant Jr MH, Taylor DC, Hardaker Jr WT, Garrett Jr WE, Sekiya JK. Management of medial-sided knee injuries, part 2: posteromedial corner. Am J Sports Med 2011; 39 (6) 1332-1340
  • 18 Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Ménétrey J. Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 2006; 14 (3) 204-213
  • 19 Osti M, Tschann P, Künzel KH, Benedetto KP. Anatomic characteristics and radiographic references of the anterolateral and posteromedial bundles of the posterior cruciate ligament. Am J Sports Med 2012; 40 (7) 1558-1563
  • 20 Park SE, DeFrate LE, Suggs JF, Gill TJ, Rubash HE, Li G. The change in length of the medial and lateral collateral ligaments during in vivo knee flexion. Knee 2005; 12 (5) 377-382
  • 21 Hartshorn T, Otarodifard K, White EA, Hatch III GF. Radiographic landmarks for locating the femoral origin of the superficial medial collateral ligament. Am J Sports Med 2013; 41 (11) 2527-2532
  • 22 Liu F, Gadikota HR, Kozánek M , et al. In vivo length patterns of the medial collateral ligament during the stance phase of gait. Knee Surg Sports Traumatol Arthrosc 2011; 19 (5) 719-727
  • 23 Liu F, Yue B, Gadikota HR , et al. Morphology of the medial collateral ligament of the knee. J Orthop Surg 2010; 5: 69
  • 24 Wijdicks CA, Ewart DT, Nuckley DJ, Johansen S, Engebretsen L, Laprade RF. Structural properties of the primary medial knee ligaments. Am J Sports Med 2010; 38 (8) 1638-1646
  • 25 Woo SLY, Abramowitch SD, Kilger R, Liang R. Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 2006; 39 (1) 1-20
  • 26 Robinson JR, Bull AM, Amis AA. Structural properties of the medial collateral ligament complex of the human knee. J Biomech 2005; 38 (5) 1067-1074
  • 27 Bowman Jr KF, Sekiya JK. Anatomy and Biomechanics of the Posterior Cruciate Ligament and Other Ligaments of the Knee. Oper Tech Sports Med 2009; 17 (3) 126-134
  • 28 Petersen W, Zantop T. Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Relat Res 2007; 454 (454) 35-47
  • 29 Hauch KN, Villegas DF, Haut Donahue TL. Geometry, time-dependent and failure properties of human meniscal attachments. J Biomech 2010; 43 (3) 463-468
  • 30 Markolf KL, Feeley BT, Tejwani SG, Martin DE, McAllister DR. Changes in knee laxity and ligament force after sectioning the posteromedial bundle of the posterior cruciate ligament. Arthroscopy 2006; 22 (10) 1100-1106
  • 31 Markolf KL, Park S, Jackson SR, McAllister DR. Contributions of the posterolateral bundle of the anterior cruciate ligament to anterior-posterior knee laxity and ligament forces. Arthroscopy 2008; 24 (7) 805-809
  • 32 Amis AA. The functions of the fibre bundles of the anterior cruciate ligament in anterior drawer, rotational laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc 2012; 20 (4) 613-620
  • 33 Amis AA, Bull AM, Gupte CM, Hijazi I, Race A, Robinson JR. Biomechanics of the PCL and related structures: posterolateral, posteromedial and meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc 2003; 11 (5) 271-281
  • 34 Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 1983; 105 (2) 136-144
  • 35 Griffith CJ, Wijdicks CA, LaPrade RF, Armitage BM, Johansen S, Engebretsen L. Force measurements on the posterior oblique ligament and superficial medial collateral ligament proximal and distal divisions to applied loads. Am J Sports Med 2009; 37 (1) 140-148
  • 36 Petersen W, Loerch S, Schanz S, Raschke M, Zantop T. The role of the posterior oblique ligament in controlling posterior tibial translation in the posterior cruciate ligament-deficient knee. Am J Sports Med 2008; 36 (3) 495-501
  • 37 Yoo YS, Jeong WS, Shetty NS, Ingham SJ, Smolinski P, Fu F. Changes in ACL length at different knee flexion angles: an in vivo biomechanical study. Knee Surg Sports Traumatol Arthrosc 2010; 18 (3) 292-297
  • 38 Belvedere C, Ensini A, Feliciangeli A , et al. Geometrical changes of knee ligaments and patellar tendon during passive flexion. J Biomech 2012; 45 (11) 1886-1892
  • 39 Papannagari R, DeFrate LE, Nha KW , et al. Function of posterior cruciate ligament bundles during in vivo knee flexion. Am J Sports Med 2007; 35 (9) 1507-1512
  • 40 Wang JH, Kato Y, Ingham SJ , et al. Effects of knee flexion angle and loading conditions on the end-to-end distance of the posterior cruciate ligament: a comparison of the roles of the anterolateral and posteromedial bundles. Am J Sports Med 2014; 42 (12) 2972-2978
  • 41 Bertozzi L, Stagni R, Fantozzi S, Cappello A. Evaluation of a cruciate ligament model: sensitivity to the parameters during drawer test simulation. J Appl Biomech 2008; 24 (3) 234-243
  • 42 Baldwin MA, Laz PJ, Stowe JQ, Rullkoetter PJ. Efficient probabilistic representation of tibiofemoral soft tissue constraint. Comput Methods Biomech Biomed Engin 2009; 12 (6) 651-659
  • 43 Bloemker KH, Guess TM, Maletsky L, Dodd K. Computational knee ligament modeling using experimentally determined zero-load lengths. Open Biomed Eng J 2012; 6: 33-41