Semin intervent Radiol 2016; 33(01): 015-020
DOI: 10.1055/s-0036-1572355
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Biology of Hemodialysis Vascular Access Failure

Akshaar Brahmbhatt
1   Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
,
Sanjay Misra
1   Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
2   Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
22. März 2016 (online)

Abstract

Arteriovenous fistulas (AVFs) are essential for patients and clinicians faced with end-stage renal disease (ESRD). While this method of vascular access for hemodialysis is preferred to others due to its reduced rate of infection and complications, they are plagued by intimal hyperplasia. The pathogenesis of intimal hyperplasia and subsequent thrombosis is brought on by uremia, hypoxia, and shear stress. These forces upregulate inflammatory and proliferative cytokines acting on leukocytes, fibroblasts, smooth muscle cells, and platelets. This activation begins initially with the progression of uremia, which induces platelet dysfunction and primes the body for an inflammatory response. The vasculature subsequently undergoes changes in oxygenation and shear stress during AVF creation. This propagates a strong inflammatory response in the vessel leading to cellular proliferation. This combined response is then further subjected to the stressors of cannulation and dialysis, eventually leading to stenosis and thrombosis. This review aims to help interventional radiologists understand the biological changes and pathogenesis of access failure.

 
  • References

  • 1 Sands JJ. Increasing AV fistulas: revisiting a time-tested solution. Semin Dial 2000; 13 (6) 351-353
  • 2 Rayner HC, Pisoni RL. The increasing use of hemodialysis catheters: evidence from the DOPPS on its significance and ways to reverse it. Semin Dial 2010; 23 (1) 6-10
  • 3 Lopez-Vargas PA, Craig JC, Gallagher MP , et al. Barriers to timely arteriovenous fistula creation: a study of providers and patients. Am J Kidney Dis 2011; 57 (6) 873-882
  • 4 Vassalotti JA, Jennings WC, Beathard GA , et al; Fistula First Breakthrough Initiative Community Education Committee. Fistula first breakthrough initiative: targeting catheter last in fistula first. Semin Dial 2012; 25 (3) 303-310
  • 5 Schinstock CA, Albright RC, Williams AW , et al. Outcomes of arteriovenous fistula creation after the Fistula First Initiative. Clin J Am Soc Nephrol 2011; 6 (8) 1996-2002
  • 6 Rayner HC, Besarab A, Brown WW, Disney A, Saito A, Pisoni RL. Vascular access results from the Dialysis Outcomes and Practice Patterns Study (DOPPS): performance against Kidney Disease Outcomes Quality Initiative (K/DOQI) Clinical Practice Guidelines. Am J Kidney Dis 2004; 44 (5) (Suppl. 02) 22-26
  • 7 Manook M, Calder F. Practical aspects of arteriovenous fistula formation in the pediatric population. Pediatr Nephrol 2013; 28 (6) 885-893
  • 8 Wasse H, Huang R, Naqvi N, Smith E, Wang D, Husain A. Inflammation, oxidation and venous neointimal hyperplasia precede vascular injury from AVF creation in CKD patients. J Vasc Access 2012; 13 (2) 168-174
  • 9 Roy-Chaudhury P, Wang Y, Krishnamoorthy M , et al. Cellular phenotypes in human stenotic lesions from haemodialysis vascular access. Nephrol Dial Transplant 2009; 24 (9) 2786-2791
  • 10 Roy-Chaudhury P, Lee TC. Vascular stenosis: biology and interventions. Curr Opin Nephrol Hypertens 2007; 16 (6) 516-522
  • 11 Roy-Chaudhury P, Arend L, Zhang J , et al. Neointimal hyperplasia in early arteriovenous fistula failure. Am J Kidney Dis 2007; 50 (5) 782-790
  • 12 Stracke S, Konner K, Köstlin I , et al. Increased expression of TGF-beta1 and IGF-I in inflammatory stenotic lesions of hemodialysis fistulas. Kidney Int 2002; 61 (3) 1011-1019
  • 13 Simone S, Loverre A, Cariello M , et al. Arteriovenous fistula stenosis in hemodialysis patients is characterized by an increased adventitial fibrosis. J Nephrol 2014; 27 (5) 555-562
  • 14 Kokubo T, Ishikawa N, Uchida H , et al. CKD accelerates development of neointimal hyperplasia in arteriovenous fistulas. J Am Soc Nephrol 2009; 20 (6) 1236-1245
  • 15 Yang B, Vohra PK, Janardhanan R, Misra KD, Misra S. Expression of profibrotic genes in a murine remnant kidney model. J Vasc Interv Radiol 2011; 22 (12) 1765-72.e1
  • 16 Lee T, Chauhan V, Krishnamoorthy M , et al. Severe venous neointimal hyperplasia prior to dialysis access surgery. Nephrol Dial Transplant 2011; 26 (7) 2264-2270
  • 17 Liang A, Wang Y, Han G, Truong L, Cheng J. Chronic kidney disease accelerates endothelial barrier dysfunction in a mouse model of an arteriovenous fistula. Am J Physiol Renal Physiol 2013; 304 (12) F1413-F1420
  • 18 Granata S, Zaza G, Simone S , et al. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics 2009; 10: 388
  • 19 Font R, Prats M, Gutiérrez C , et al. [Is there a relationship between cystatin C and inflammatory status, oxidative stress and other cardiovascular risk factors in non-diabetic patients with chronic kidney disease?]. Nefrologia 2009; 29 (3) 228-235
  • 20 Koyama H, Nishizawa Y. AGEs/RAGE in CKD: irreversible metabolic memory road toward CVD?. Eur J Clin Invest 2010; 40 (7) 623-635
  • 21 Gawdzik J, Mathew L, Kim G, Puri TS, Hofmann Bowman MA. Vascular remodeling and arterial calcification are directly mediated by S100A12 (EN-RAGE) in chronic kidney disease. Am J Nephrol 2011; 33 (3) 250-259
  • 22 Nasrallah MM, El-Shehaby AR, Osman NA, Salem MM, Nassef A, El Din UA. Endogenous soluble receptor of advanced glycation end-products (esRAGE) is negatively associated with vascular calcification in non-diabetic hemodialysis patients. Int Urol Nephrol 2012; 44 (4) 1193-1199
  • 23 Dursun B, Dursun E, Suleymanlar G , et al. Carotid artery intima-media thickness correlates with oxidative stress in chronic haemodialysis patients with accelerated atherosclerosis. Nephrol Dial Transplant 2008; 23 (5) 1697-1703
  • 24 Garcia-Bello JA, Gómez-Díaz RA, Contreras-Rodríguez A , et al. Carotid intima media thickness, oxidative stress, and inflammation in children with chronic kidney disease. Pediatr Nephrol 2014; 29 (2) 273-281
  • 25 Janda K, Krzanowski M, Gajda M , et al. Cardiovascular risk in chronic kidney disease patients: intima-media thickness predicts the incidence and severity of histologically assessed medial calcification in radial arteries. BMC Nephrol 2015; 16: 78
  • 26 Kotur-Stevuljević J, Peco-Antić A, Spasić S , et al. Hyperlipidemia, oxidative stress, and intima media thickness in children with chronic kidney disease. Pediatr Nephrol 2013; 28 (2) 295-303
  • 27 Fujisaki K, Tsuruya K, Yamato M , et al. Cerebral oxidative stress induces spatial working memory dysfunction in uremic mice: neuroprotective effect of Tempol. Nephrol Dial Transplant 2014; 29 (3) 529-538
  • 28 Hruska KA, Mathew S, Memon I, Saab G. The pathogenesis of vascular calcification in the chronic kidney disease mineral bone disorder (CKD-MBD): the links between bone and the vasculature. Semin Nephrol 2009; 29 (2) 156-165
  • 29 Brahmbhatt A, NievesTorres E, Yang B , et al. The role of Iex-1 in the pathogenesis of venous neointimal hyperplasia associated with hemodialysis arteriovenous fistula. PLoS ONE 2014; 9 (7) e102542
  • 30 Misra S, Shergill U, Yang B, Janardhanan R, Misra KD. Increased expression of HIF-1alpha, VEGF-A and its receptors, MMP-2, TIMP-1, and ADAMTS-1 at the venous stenosis of arteriovenous fistula in a mouse model with renal insufficiency. J Vasc Interv Radiol 2010; 21 (8) 1255-1261
  • 31 Wan J, Lata C, Santilli A, Green D, Roy S, Santilli S. Supplemental oxygen reverses hypoxia-induced smooth muscle cell proliferation by modulating HIF-alpha and VEGF levels in a rabbit arteriovenous fistula model. Ann Vasc Surg 2014; 28 (3) 725-736
  • 32 Ohtani K, Egashira K, Hiasa K , et al. Blockade of vascular endothelial growth factor suppresses experimental restenosis after intraluminal injury by inhibiting recruitment of monocyte lineage cells. Circulation 2004; 110 (16) 2444-2452
  • 33 Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol 2006; 39 (5) 469-478
  • 34 Huusko J, Merentie M, Dijkstra MH , et al. The effects of VEGF-R1 and VEGF-R2 ligands on angiogenic responses and left ventricular function in mice. Cardiovasc Res 2010; 86 (1) 122-130
  • 35 Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3 (10) 721-732
  • 36 Fragoso A, Silva AP, Gundlach K, Büchel J, Neves PL. Magnesium and FGF-23 are independent predictors of pulse pressure in pre-dialysis diabetic chronic kidney disease patients. Clin Kidney J 2014; 7 (2) 161-166
  • 37 Yang B, Janardhanan R, Vohra P , et al. Adventitial transduction of lentivirus-shRNA-VEGF-A in arteriovenous fistula reduces venous stenosis formation. Kidney Int 2014; 85 (2) 289-306
  • 38 Veillat V, Carli C, Metz CN, Al-Abed Y, Naccache PH, Akoum A. Macrophage migration inhibitory factor elicits an angiogenic phenotype in human ectopic endometrial cells and triggers the production of major angiogenic factors via CD44, CD74, and MAPK signaling pathways. J Clin Endocrinol Metab 2010; 95 (12) E403-E412
  • 39 Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009; 29 (6) 313-326
  • 40 Stangenberg S, Nguyen LT, Chen H , et al. Oxidative stress, mitochondrial perturbations and fetal programming of renal disease induced by maternal smoking. Int J Biochem Cell Biol 2015; 64: 81-90
  • 41 van der Weerd NC, Grooteman MP, Nubé MJ, ter Wee PM, Swinkels DW, Gaillard CA. Hepcidin in chronic kidney disease: not an anaemia management tool, but promising as a cardiovascular biomarker. Neth J Med 2015; 73 (3) 108-118
  • 42 Durante W, Lin C-C. HOming in on arteriovenous fistula survival. Kidney Int 2008; 74 (1) 9-11
  • 43 Juncos JP, Tracz MJ, Croatt AJ , et al. Genetic deficiency of heme oxygenase-1 impairs functionality and form of an arteriovenous fistula in the mouse. Kidney Int 2008; 74 (1) 47-51
  • 44 Kang L, Grande JP, Farrugia G, Croatt AJ, Katusic ZS, Nath KA. Functioning of an arteriovenous fistula requires heme oxygenase-2. Am J Physiol Renal Physiol 2013; 305 (4) F545-F552
  • 45 Feldman HI, Joffe M, Rosas SE, Burns JE, Knauss J, Brayman K. Predictors of successful arteriovenous fistula maturation. Am J Kidney Dis 2003; 42 (5) 1000-1012
  • 46 Huijbregts HJT, Bots ML, Wittens CHA, Schrama YC, Moll FL, Blankestijn PJ ; CIMINO Study Group. Hemodialysis arteriovenous fistula patency revisited: results of a prospective, multicenter initiative. Clin J Am Soc Nephrol 2008; 3 (3) 714-719
  • 47 Sho E, Nanjo H, Sho M , et al. Arterial enlargement, tortuosity, and intimal thickening in response to sequential exposure to high and low wall shear stress. J Vasc Surg 2004; 39 (3) 601-612
  • 48 Dardik A, Chen L, Frattini J , et al. Differential effects of orbital and laminar shear stress on endothelial cells. J Vasc Surg 2005; 41 (5) 869-880
  • 49 Nanjo H, Sho E, Komatsu M, Sho M, Zarins CK, Masuda H. Intermittent short-duration exposure to low wall shear stress induces intimal thickening in arteries exposed to chronic high shear stress. Exp Mol Pathol 2006; 80 (1) 38-45
  • 50 Jia L, Wang L, Wei F , et al. Effects of wall shear stress in venous neointimal hyperplasia of arteriovenous fistulae. Nephrology (Carlton) 2015; 20 (5) 335-342
  • 51 Ma Y, Zhou L, Dong J, Zhang X, Yan S. Arterial stiffness and increased cardiovascular risk in chronic kidney disease. Int Urol Nephrol 2015; 47 (7) 1157-1164
  • 52 Jiang Z, Berceli SA, Pfahnl CL , et al. Wall shear modulation of cytokines in early vein grafts. J Vasc Surg 2004; 40 (2) 345-350
  • 53 Ali BH, Adham SA, Al Za'abi M , et al. Ameliorative effect of chrysin on adenine-induced chronic kidney disease in rats. PLoS ONE 2015; 10 (4) e0125285
  • 54 Misra S, Fu AA, Puggioni A , et al. Increased shear stress with upregulation of VEGF-A and its receptors and MMP-2, MMP-9, and TIMP-1 in venous stenosis of hemodialysis grafts. Am J Physiol Heart Circ Physiol 2008; 294 (5) H2219-H2230
  • 55 Conway DE, Schwartz MA. Mechanotransduction of shear stress occurs through changes in VE-cadherin and PECAM-1 tension: implications for cell migration. Cell Adhes Migr 2015; 9 (5) 335-339
  • 56 Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 2013; 23 (11) 1024-1030
  • 57 Galbraith CG, Skalak R, Chien S. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil Cytoskeleton 1998; 40 (4) 317-330
  • 58 Osborn EA, Rabodzey A, Dewey Jr CF, Hartwig JH. Endothelial actin cytoskeleton remodeling during mechanostimulation with fluid shear stress. Am J Physiol Cell Physiol 2006; 290 (2) C444-C452
  • 59 Paniagua OA, Bryant MB, Panza JA. Role of endothelial nitric oxide in shear stress-induced vasodilation of human microvasculature: diminished activity in hypertensive and hypercholesterolemic patients. Circulation 2001; 103 (13) 1752-1758
  • 60 Kaw D, Malhotra D. Platelet dysfunction and end-stage renal disease. Semin Dial 2006; 19 (4) 317-322
  • 61 Li M, Wang Z, Ma T , et al. Enhanced platelet apoptosis in chronic uremic patients. Ren Fail 2014; 36 (6) 847-853
  • 62 Rios DR, Carvalho Md, Lwaleed BA, Simões e Silva AC, Borges KB, Dusse LM. Hemostatic changes in patients with end stage renal disease undergoing hemodialysis. Clin Chim Acta 2010; 411 (3–4) 135-139
  • 63 Turitto VT, Hall CL. Mechanical factors affecting hemostasis and thrombosis. Thromb Res 1998; 92 (6) (Suppl. 02) S25-S31
  • 64 Corti R, Hutter R, Badimon JJ, Fuster V. Evolving concepts in the triad of atherosclerosis, inflammation and thrombosis. J Thromb Thrombolysis 2004; 17 (1) 35-44
  • 65 Serrano A, García F, Serrano M , et al. IgA antibodies against β2 glycoprotein I in hemodialysis patients are an independent risk factor for mortality. Kidney Int 2012; 81 (12) 1239-1244
  • 66 Fischer MJ, Rauch J, Levine JS. The antiphospholipid syndrome. Semin Nephrol 2007; 27 (1) 35-46
  • 67 Costa E, Rocha S, Rocha-Pereira P , et al. Cross-talk between inflammation, coagulation/fibrinolysis and vascular access in hemodialysis patients. J Vasc Access 2008; 9 (4) 248-253
  • 68 Erdem Y, Haznedaroglu IC, Celik I , et al. Coagulation, fibrinolysis and fibrinolysis inhibitors in haemodialysis patients: contribution of arteriovenous fistula. Nephrol Dial Transplant 1996; 11 (7) 1299-1305
  • 69 Milburn JA, Ford I, Cassar K, Fluck N, Brittenden J. Platelet activation, coagulation activation and C-reactive protein in simultaneous samples from the vascular access and peripheral veins of haemodialysis patients. Int J Lab Hematol 2012; 34 (1) 52-58
  • 70 Daugirdas JT, Bernardo AA. Hemodialysis effect on platelet count and function and hemodialysis-associated thrombocytopenia. Kidney Int 2012; 82 (2) 147-157
  • 71 Milburn JA, Cassar K, Ford I, Fluck N, Brittenden J. Prothrombotic changes in platelet, endothelial and coagulation function following hemodialysis. Int J Artif Organs 2011; 34 (3) 280-287
  • 72 Bartels PC, Schoorl M, Schoorl M, Wiering JG, Nubé MJ. Activation of coagulation during treatment with haemodialysis. Scand J Clin Lab Invest 2000; 60 (4) 283-290
  • 73 Milburn JA, Ford I, Mutch NJ, Fluck N, Brittenden J. Thrombin-anti-thrombin levels and patency of arterio-venous fistula in patients undergoing haemodialysis compared to healthy volunteers: a prospective analysis. PLoS ONE 2013; 8 (7) e67799
  • 74 Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115 (12) 3378-3384
  • 75 Amabile N, Guérin AP, Leroyer A , et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol 2005; 16 (11) 3381-3388
  • 76 Boulanger CM, Amabile N, Guérin AP , et al. In vivo shear stress determines circulating levels of endothelial microparticles in end-stage renal disease. Hypertension 2007; 49 (4) 902-908
  • 77 Mimura I, Nangaku M, Kanki Y , et al. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol 2012; 32 (15) 3018-3032
  • 78 Campos B, Lee T, Roy-Chaudhury P. Arteriovenous fistula failure: is there a role for epigenetic regulation?. Semin Nephrol 2013; 33 (4) 400-406
  • 79 Candan F, Yildiz G, Kayataş M. Role of the VEGF 936 gene polymorphism and VEGF-A levels in the late-term arteriovenous fistula thrombosis in patients undergoing hemodialysis. Int Urol Nephrol 2014; 46 (9) 1815-1823
  • 80 Heine GH, Ulrich C, Sester U, Sester M, Köhler H, Girndt M. Transforming growth factor beta1 genotype polymorphisms determine AV fistula patency in hemodialysis patients. Kidney Int 2003; 64 (3) 1101-1107
  • 81 Lin CC, Yang WC, Lin SJ , et al. Length polymorphism in heme oxygenase-1 is associated with arteriovenous fistula patency in hemodialysis patients. Kidney Int 2006; 69 (1) 165-172
  • 82 Sener EF, Taheri S, Korkmaz K , et al. Association of TNF-α -308 G > A and ACE I/D gene polymorphisms in hemodialysis patients with arteriovenous fistula thrombosis. Int Urol Nephrol 2014; 46 (7) 1419-1425
  • 83 Wu JH, Zhang DW, Cheng XL, Shi H, Fan YP. Platelet glycoprotein IIb HPA-3 a/b polymorphism is associated with native arteriovenous fistula thrombosis in chronic hemodialysis patients. Ren Fail 2012; 34 (8) 960-963