Subscribe to RSS
DOI: 10.1055/s-0036-1584803
Antivirals for Respiratory Viral Infections: Problems and Prospects
Publication History
Publication Date:
03 August 2016 (online)
Abstract
In the past two decades, several newly emerging and reemerging viral respiratory pathogens including several influenza viruses (avian influenza and pandemic influenza), severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV), have continued to challenge medical and public health systems. Thereafter, the development of cost-effective, broad-spectrum antiviral agents is the urgent mission of both virologists and pharmacologists. Current antiviral developments have focused targets on viral entry, replication, release, and intercellular pathways essential for viral life cycle. Here, we review the current literature on challenges and prospects in the development of these antivirals.
* All three authors contributed equally to this work.
-
References
- 1 Jartti T, Jartti L, Ruuskanen O, Söderlund-Venermo M. New respiratory viral infections. Curr Opin Pulm Med 2012; 18 (3) 271-278
- 2 Liu Q, Liu DY, Yang ZQ. Characteristics of human infection with avian influenza viruses and development of new antiviral agents. Acta Pharmacol Sin 2013; 34 (10) 1257-1269
- 3 Hirst M, Astell CR, Griffith M , et al. Novel avian influenza H7N3 strain outbreak, British Columbia. Emerg Infect Dis 2004; 10 (12) 2192-2195
- 4 Peiris M, Yam WC, Chan KH, Ghose P, Shortridge KF. Influenza A H9N2: aspects of laboratory diagnosis. J Clin Microbiol 1999; 37 (10) 3426-3427
- 5 Peiris M, Yuen KY, Leung CW , et al. Human infection with influenza H9N2. Lancet 1999; 354 (9182) 916-917
- 6 Su S, Bi Y, Wong G, Gray GC, Gao GF, Li S. Epidemiology, evolution and recent outbreaks of avian influenza viruses in China: A Review. J Virol 2015; 89 (17) 8671-8676
- 7 Hilgenfeld R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J 2015; 89 (17) 8671-8676
- 8 Osterhaus AD. New respiratory viruses of humans. Pediatr Infect Dis J 2008; 27 (10, Suppl): S71-S74
- 9 Houser K, Subbarao K. Influenza vaccines: challenges and solutions. Cell Host Microbe 2015; 17 (3) 295-300
- 10 Knipe DM, Howley PM. Fields virology. 6th ed. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2013
- 11 Webster RG, Govorkova EA. Continuing challenges in influenza. Ann N Y Acad Sci 2014; 1323: 115-139
- 12 Simões EA, DeVincenzo JP, Boeckh M , et al. Challenges and opportunities in developing respiratory syncytial virus therapeutics. J Infect Dis 2015; 211 (Suppl. 01) S1-S20
- 13 Zhu JD, Meng W, Wang XJ, Wang HC. Broad-spectrum antiviral agents. Front Microbiol 2015; 6: 517
- 14 Zambon MC, Stockton JD, Clewley JP, Fleming DM. Contribution of influenza and respiratory syncytial virus to community cases of influenza-like illness: an observational study. Lancet 2001; 358 (9291) 1410-1416
- 15 Henrickson KJ. Advances in the laboratory diagnosis of viral respiratory disease. Pediatr Infect Dis J 2004; 23 (1, Suppl) S6-S10
- 16 Principi N, Esposito S. Antigen-based assays for the identification of influenza virus and respiratory syncytial virus: why and how to use them in pediatric practice. Clin Lab Med 2009; 29 (4) 649-660
- 17 Pérez-Ruiz M, Pedrosa-Corral I, Sanbonmatsu-Gámez S, Navarro-Marí M. Laboratory detection of respiratory viruses by automated techniques. Open Virol J 2012; 6: 151-159
- 18 Dundas NE, Ziadie MS, Revell PA , et al. A lean laboratory: operational simplicity and cost effectiveness of the Luminex xTAG™ respiratory viral panel. J Mol Diagn 2011; 13 (2) 175-179
- 19 Edinger TO, Pohl MO, Stertz S. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol 2014; 95 (Pt 2): 263-277
- 20 Hedlund M, Aschenbrenner LM, Jensen K, Larson JL, Fang F. Sialidase-based anti-influenza virus therapy protects against secondary pneumococcal infection. J Infect Dis 2010; 201 (7) 1007-1015
- 21 Nicholls JM, Moss RB, Haslam SM. The use of sialidase therapy for respiratory viral infections. Antiviral Res 2013; 98 (3) 401-409
- 22 Moss RB, Hansen C, Sanders RL, Hawley S, Li T, Steigbigel RT. A phase II study of DAS181, a novel host directed antiviral for the treatment of influenza infection. J Infect Dis 2012; 206 (12) 1844-1851
- 23 Huentelman MJ, Zubcevic J, Hernández Prada JA , et al. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension 2004; 44 (6) 903-906
- 24 Danilczyk U, Penninger JM. Angiotensin-converting enzyme II in the heart and the kidney. Circ Res 2006; 98 (4) 463-471
- 25 Friesen RH, Koudstaal W, Koldijk MH , et al. New class of monoclonal antibodies against severe influenza: prophylactic and therapeutic efficacy in ferrets. PLoS ONE 2010; 5 (2) e9106
- 26 Lagos R, DeVincenzo JP, Muñoz A , et al. Safety and antiviral activity of motavizumab, a respiratory syncytial virus (RSV)-specific humanized monoclonal antibody, when administered to RSV-infected children. Pediatr Infect Dis J 2009; 28 (9) 835-837
- 27 Han YM, Seo HJ, Choi SH , et al. Effect of Prophylactic Palivizumab on Admission Due to Respiratory Syncytial Virus Infection in Former Very Low Birth Weight Infants with Bronchopulmonary Dysplasia. J Korean Med Sci 2015; 30 (7) 924-931
- 28 Ramilo O, Lagos R, Sáez-Llorens X , et al; Motavizumab Study Group. Motavizumab treatment of infants hospitalized with respiratory syncytial virus infection does not decrease viral load or severity of illness. Pediatr Infect Dis J 2014; 33 (7) 703-709
- 29 Hegele RG. Respiratory syncytial virus therapy and prophylaxis: have we finally turned the corner?. Eur Respir J 2011; 38 (2) 246-247
- 30 Plemper RK. Cell entry of enveloped viruses. Curr Opin Virol 2011; 1 (2) 92-100
- 31 Cosset FL, Lavillette D. Cell entry of enveloped viruses. Adv Genet 2011; 73: 121-183
- 32 Teissier E, Penin F, Pécheur EI. Targeting cell entry of enveloped viruses as an antiviral strategy. Molecules 2011; 16 (1) 221-250
- 33 de Vries E, Tscherne DM, Wienholts MJ , et al. Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog 2011; 7 (3) e1001329
- 34 Sun X, Whittaker GR. Role of the actin cytoskeleton during influenza virus internalization into polarized epithelial cells. Cell Microbiol 2007; 9 (7) 1672-1682
- 35 Ehrhardt C, Marjuki H, Wolff T , et al. Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence. Cell Microbiol 2006; 8 (8) 1336-1348
- 36 Eierhoff T, Hrincius ER, Rescher U, Ludwig S, Ehrhardt C. The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells. PLoS Pathog 2010; 6 (9) e1001099
- 37 Li S, Sieben C, Ludwig K , et al. pH-Controlled two-step uncoating of influenza virus. Biophys J 2014; 106 (7) 1447-1456
- 38 Garcia NK, Guttman M, Ebner JL, Lee KK. Dynamic changes during acid-induced activation of influenza hemagglutinin. Structure 2015; 23 (4) 665-676
- 39 Ochiai H, Sakai S, Hirabayashi T, Shimizu Y, Terasawa K. Inhibitory effect of bafilomycin A1, a specific inhibitor of vacuolar-type proton pump, on the growth of influenza A and B viruses in MDCK cells. Antiviral Res 1995; 27 (4) 425-430
- 40 Chen HW, Cheng JX, Liu MT , et al. Inhibitory and combinatorial effect of diphyllin, a v-ATPase blocker, on influenza viruses. Antiviral Res 2013; 99 (3) 371-382
- 41 Müller KH, Kainov DE, El Bakkouri K , et al. The proton translocation domain of cellular vacuolar ATPase provides a target for the treatment of influenza A virus infections. Br J Pharmacol 2011; 164 (2) 344-357
- 42 Vigant F, Lee J, Hollmann A , et al. A mechanistic paradigm for broad-spectrum antivirals that target virus-cell fusion. PLoS Pathog 2013; 9 (4) e1003297
- 43 Wolf MC, Freiberg AN, Zhang T , et al. A broad-spectrum antiviral targeting entry of enveloped viruses. Proc Natl Acad Sci U S A 2010; 107 (7) 3157-3162
- 44 Leneva IA, Russell RJ, Boriskin YS, Hay AJ. Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol. Antiviral Res 2009; 81 (2) 132-140
- 45 Boriskin YS, Leneva IA, Pécheur EI, Polyak SJ. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem 2008; 15 (10) 997-1005
- 46 Burtseva EI, Shevchenko ES, Beliakova NV , et al. [Monitoring of the sensitivity of epidemic influenza virus strains isolated in Russia to etiotropic chemical agents]. Vopr Virusol 2009; 54 (5) 24-28
- 47 DeVincenzo JP, Whitley RJ, Mackman RL , et al. Oral GS-5806 activity in a respiratory syncytial virus challenge study. N Engl J Med 2014; 371 (8) 711-722
- 48 Douglas JL, Panis ML, Ho E , et al. Small molecules VP-14637 and JNJ-2408068 inhibit respiratory syncytial virus fusion by similar mechanisms. Antimicrob Agents Chemother 2005; 49 (6) 2460-2466
- 49 Elshabrawy HA, Fan J, Haddad CS , et al. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay. J Virol 2014; 88 (8) 4353-4365
- 50 Gu R, Liu LA, Wei D. Drug inhibition and proton conduction mechanisms of the influenza a M2 proton channel. Adv Exp Med Biol 2015; 827: 205-226
- 51 Wei C, Pohorille A. M2 proton channel: toward a model of a primitive proton pump. Orig Life Evol Biosph 2015; 45 (1–2) 241-248
- 52 Ilyushina NA, Govorkova EA, Webster RG. Detection of amantadine-resistant variants among avian influenza viruses isolated in North America and Asia. Virology 2005; 341 (1) 102-106
- 53 Huang Y, Hu B, Wen X , et al. Evolution analysis of the matrix (M) protein genes of 17 H9N2 chicken influenza viruses isolated in northern China during 1998-2008. Virus Genes 2009; 38 (3) 398-403
- 54 Centers for Disease Control and Prevention (CDC). Update: drug susceptibility of swine-origin influenza A (H1N1) viruses, April 2009. MMWR Morb Mortal Wkly Rep 2009; 58 (16) 433-435
- 55 Wang J, Ma C, Wang J , et al. Discovery of novel dual inhibitors of the wild-type and the most prevalent drug-resistant mutant, S31N, of the M2 proton channel from influenza A virus. J Med Chem 2013; 56 (7) 2804-2812
- 56 Rodriguez-Frandsen A, Alfonso R, Nieto A. Influenza virus polymerase: Functions on host range, inhibition of cellular response to infection and pathogenicity. Virus Res 2015; 209: 23-38
- 57 Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res 2013; 100 (2) 446-454
- 58 Nagata T, Lefor AK, Hasegawa M, Ishii M. Favipiravir: a new medication for the Ebola virus disease pandemic. Disaster Med Public Health Prep 2015; 9 (1) 79-81
- 59 Kiso M, Takahashi K, Sakai-Tagawa Y , et al. T-705 (favipiravir) activity against lethal H5N1 influenza A viruses. Proc Natl Acad Sci U S A 2010; 107 (2) 882-887
- 60 Yamada K, Koyama H, Hagiwara K , et al. Identification of a novel compound with antiviral activity against influenza A virus depending on PA subunit of viral RNA polymerase. Microbes Infect 2012; 14 (9) 740-747
- 61 Warren TK, Wells J, Panchal RG , et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 2014; 508 (7496) 402-405
- 62 Wang G, Deval J, Hong J , et al. Discovery of 4′-chloromethyl-2′-deoxy-3′,5′-di-O-isobutyryl-2′-fluorocytidine (ALS-8176), a first-in-class RSV polymerase inhibitor for treatment of human respiratory syncytial virus infection. J Med Chem 2015; 58 (4) 1862-1878
- 63 Krumm SA, Ndungu JM, Yoon JJ , et al. Potent host-directed small-molecule inhibitors of myxovirus RNA-dependent RNA-polymerases. PLoS ONE 2011; 6 (5) e20069
- 64 Brochot E, François C, Castelain S , et al. A new tool to study ribavirin-induced haemolysis. Antivir Ther 2012; 17 (7) 1311-1317
- 65 Sidwell RW, Bailey KW, Wong MH, Barnard DL, Smee DF. In vitro and in vivo influenza virus-inhibitory effects of viramidine. Antiviral Res 2005; 68 (1) 10-17
- 66 Ilyushina NA, Hay A, Yilmaz N, Boon AC, Webster RG, Govorkova EA. Oseltamivir-ribavirin combination therapy for highly pathogenic H5N1 influenza virus infection in mice. Antimicrob Agents Chemother 2008; 52 (11) 3889-3897
- 67 Smith CB, Charette RP, Fox JP, Cooney MK, Hall CE. Lack of effect of oral ribavirin in naturally occurring influenza A virus (H1N1) infection. J Infect Dis 1980; 141 (5) 548-554
- 68 Gish RG. Treating HCV with ribavirin analogues and ribavirin-like molecules. J Antimicrob Chemother 2006; 57 (1) 8-13
- 69 Evans DR, Guy HI. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem 2004; 279 (32) 33035-33038
- 70 Hoffmann HH, Kunz A, Simon VA, Palese P, Shaw ML. Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc Natl Acad Sci U S A 2011; 108 (14) 5777-5782
- 71 Smee DF, Hurst BL, Day CW. D282, a non-nucleoside inhibitor of influenza virus infection that interferes with de novo pyrimidine biosynthesis. Antivir Chem Chemother 2012; 22 (6) 263-272
- 72 Graham AC, Temple RM, Obar JJ. Mast cells and influenza a virus: association with allergic responses and beyond. Front Immunol 2015; 6: 238
- 73 Frieman M, Basu D, Matthews K , et al. Yeast based small molecule screen for inhibitors of SARS-CoV. PLoS ONE 2011; 6 (12) e28479
- 74 Adedeji AO, Sarafianos SG. Antiviral drugs specific for coronaviruses in preclinical development. Curr Opin Virol 2014; 8: 45-53
- 75 Valiente-Echeverría F, Hermoso MA, Soto-Rifo R. RNA helicase DDX3: at the crossroad of viral replication and antiviral immunity. Rev Med Virol 2015; 25 (5) 286-299
- 76 Tanner JA, Zheng BJ, Zhou J , et al. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem Biol 2005; 12 (3) 303-311
- 77 Adedeji AO, Singh K, Kassim A , et al. Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses. Antimicrob Agents Chemother 2014; 58 (8) 4894-4898
- 78 Liu G, Xiang Y, Guo C, Pei Y, Wang Y, Kitazato K. Cofilin-1 is involved in regulation of actin reorganization during influenza A virus assembly and budding. Biochem Biophys Res Commun 2014; 453 (4) 821-825
- 79 Rossman JS, Lamb RA. Influenza virus assembly and budding. Virology 2011; 411 (2) 229-236
- 80 Chase GP, Rameix-Welti MA, Zvirbliene A , et al. Influenza virus ribonucleoprotein complexes gain preferential access to cellular export machinery through chromatin targeting. PLoS Pathog 2011; 7 (9) e1002187
- 81 Perwitasari O, Johnson S, Yan X , et al. Verdinexor, a novel selective inhibitor of nuclear export, reduces influenza a virus replication in vitro and in vivo. J Virol 2014; 88 (17) 10228-10243
- 82 Rossignol JF, La Frazia S, Chiappa L, Ciucci A, Santoro MG. Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level. J Biol Chem 2009; 284 (43) 29798-29808
- 83 Rossignol JF. Thiazolides: a new class of antiviral drugs. Expert Opin Drug Metab Toxicol 2009; 5 (6) 667-674
- 84 de Wilde AH, Li Y, van der Meer Y , et al. Cyclophilin inhibitors block arterivirus replication by interfering with viral RNA synthesis. J Virol 2013; 87 (3) 1454-1464
- 85 Hamamoto I, Harazaki K, Inase N, Takaku H, Tashiro M, Yamamoto N. Cyclosporin A inhibits the propagation of influenza virus by interfering with a late event in the virus life cycle. Jpn J Infect Dis 2013; 66 (4) 276-283
- 86 Gasparini R, Amicizia D, Lai PL, Bragazzi NL, Panatto D. Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part II: Future compounds against influenza virus. J Prev Med Hyg 2014; 55 (4) 109-129
- 87 Varghese JN, Smith PW, Sollis SL , et al. Drug design against a shifting target: a structural basis for resistance to inhibitors in a variant of influenza virus neuraminidase. Structure 1998; 6 (6) 735-746
- 88 Yamashita M, Tomozawa T, Kakuta M, Tokumitsu A, Nasu H, Kubo S. CS-8958, a prodrug of the new neuraminidase inhibitor R-125489, shows long-acting anti-influenza virus activity. Antimicrob Agents Chemother 2009; 53 (1) 186-192
- 89 Dharan NJ, Gubareva LV, Meyer JJ , et al; Oseltamivir-Resistance Working Group. Infections with oseltamivir-resistant influenza A(H1N1) virus in the United States. JAMA 2009; 301 (10) 1034-1041
- 90 Planz O. Development of cellular signaling pathway inhibitors as new antivirals against influenza. Antiviral Res 2013; 98 (3) 457-468
- 91 Ludwig S. Targeting cell signalling pathways to fight the flu: towards a paradigm change in anti-influenza therapy. J Antimicrob Chemother 2009; 64 (1) 1-4
- 92 Droebner K, Pleschka S, Ludwig S, Planz O. Antiviral activity of the MEK-inhibitor U0126 against pandemic H1N1v and highly pathogenic avian influenza virus in vitro and in vivo. Antiviral Res 2011; 92 (2) 195-203
- 93 Mazur I, Wurzer WJ, Ehrhardt C , et al. Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NF-kappaB-inhibiting activity. Cell Microbiol 2007; 9 (7) 1683-1694
- 94 Guidelines for Management of Avian H7N9 Influenza Infection. 2013 http://www.moh.gov.cn/ewebeditor/uploadfile/2013/04/20130410212136993.doc
- 95 Guidelines for Management of Pandemic. (H1N1) 2009 Influenza. 2009 http://www.moh.gov.cn/mohwsyjbgs/s9990/200910/43111.shtml
- 96 Shang X, Pan H, Li M, Miao X, Ding H. Lonicera japonica Thunb.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol 2011; 138 (1) 1-21
- 97 WHO monographs on selected medicinal plants. 1999 http://apps.who.int/medicinedocs/en/d/Js2200e/
- 98 Li C, Dai Y, Zhang SX , et al. Quinoid glycosides from Forsythia suspensa. Phytochemistry 2014; 104: 105-113
- 99 Xu JJ, Wu X, Li MM , et al. Antiviral activity of polymethoxylated flavones from “Guangchenpi”, the edible and medicinal pericarps of citrus reticulata ‘Chachi’. J Agric Food Chem 2014; 62 (10) 2182-2189
- 100 Liu Q, Lu L, Hua M , et al. Jiawei-Yupingfeng-Tang, a Chinese herbal formula, inhibits respiratory viral infections in vitro and in vivo. J Ethnopharmacol 2013; 150 (2) 521-528
- 101 Ling JX, Wei F, Li N , et al. Amelioration of influenza virus-induced reactive oxygen species formation by epigallocatechin gallate derived from green tea. Acta Pharmacol Sin 2012; 33 (12) 1533-1541