Semin Thromb Hemost 2017; 43(2): 169-177
DOI: 10.1055/s-0036-1586228
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Role of Plasminogen Activator Inhibitor Type-1 in Fibrosis

Panagiotis Flevaris
1   Department of Medicine, Northwestern University, Chicago, Illinois
,
Douglas Vaughan
1   Department of Medicine, Northwestern University, Chicago, Illinois
› Author Affiliations
Further Information

Publication History

Publication Date:
24 August 2016 (online)

Abstract

Extracellular matrix (ECM) deposition during wound healing is a physiological response to an insult. Wound healing becomes deregulated in the setting of chronic injury or long-standing metabolic disease, leading to the accumulation of ECM components and fibrosis. Matrix protein turnover is determined by the rate of synthesis as well as the rate of proteolytic degradation and clearance by matrix metalloproteinases (MMPs). The persistent activation of interstitial myofibroblasts, coupled with defects in matrix proteolysis, ultimately disrupts tissue architecture and leads to biochemical and mechanical organ dysfunction with eventual organ failure. Plasminogen activator inhibitor type-1 (PAI-1) regulates tissue homeostasis and wound healing by inhibiting plasmin-mediated MMP activation. Multiple reports using models of liver, lung, and kidney fibrosis suggest that PAI-1 deficiency or inhibition of PAI-1 activity attenuates fibrosis. The disinhibition of plasmin-mediated MMP activation leads to collagen degradation and its diminished accumulation, resulting in the reduction of fibrotic matrix deposition in these organs. Paradoxically, homozygous deficiency of PAI-1 promotes age-dependent spontaneous cardiac fibrosis, suggesting a protective role for PAI-1 in the heart. It remains unclear whether PAI-1-deficient cardiac fibroblasts have increased proliferative, migratory, or differentiation capabilities, that allow them to overcome increased plasmin and MMP activity and matrix clearance. In this review, we examine the specific roles of PAI-1 in fibrosis of different organs including the lung, liver, kidney, and cardiovascular system.

 
  • References

  • 1 Kooistra T, Bosma PJ, Töns HA, van den Berg AP, Meyer P, Princen HM. Plasminogen activator inhibitor 1: biosynthesis and mRNA level are increased by insulin in cultured human hepatocytes. Thromb Haemost 1989; 62 (2) 723-728
  • 2 Wongwatana S, Sriyabhaya N. Nontuberculous mycobacterial infection of the lung in a chest hospital in Thailand. J Med Assoc Thai 1992; 75 (1) 1-10
  • 3 Handt S, Jerome WG, Tietze L, Hantgan RR. Plasminogen activator inhibitor-1 secretion of endothelial cells increases fibrinolytic resistance of an in vitro fibrin clot: evidence for a key role of endothelial cells in thrombolytic resistance. Blood 1996; 87 (10) 4204-4213
  • 4 Reilly CF, Fujita T, Mayer EJ, Siegfried ME. Both circulating and clot-bound plasminogen activator inhibitor-1 inhibit endogenous fibrinolysis in the rat. Arterioscler Thromb 1991; 11 (5) 1276-1286
  • 5 Hekman CM, Loskutoff DJ. Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 1985; 260 (21) 11581-11587
  • 6 Devy L, Blacher S, Grignet-Debrus C , et al. The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB J 2002; 16 (2) 147-154
  • 7 Cesari M, Pahor M, Incalzi RA. Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther 2010; 28 (5) e72-e91
  • 8 Oishi K. Plasminogen activator inhibitor-1 and the circadian clock in metabolic disorders. Clin Exp Hypertens 2009; 31 (3) 208-219
  • 9 Zhou A, Huntington JA, Pannu NS, Carrell RW, Read RJ. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol 2003; 10 (7) 541-544
  • 10 Kitano K, Kinoshita K, Fukumura A, Matsukado Y. Familial multiple hemangioblastomas—report of two cases in a family [in Japanese]. No Shinkei Geka 1977; 5 (6) 611-617
  • 11 Gorlatova NV, Cale JM, Elokdah H , et al. Mechanism of inactivation of plasminogen activator inhibitor-1 by a small molecule inhibitor. J Biol Chem 2007; 282 (12) 9288-9296
  • 12 Levin EG, Santell L. Conversion of the active to latent plasminogen activator inhibitor from human endothelial cells. Blood 1987; 70 (4) 1090-1098
  • 13 Nagase H, Woessner Jr JF. Matrix metalloproteinases. J Biol Chem 1999; 274 (31) 21491-21494
  • 14 Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003; 92 (8) 827-839
  • 15 Maemura K, de la Monte SM, Chin MT , et al. CLIF, a novel cycle-like factor, regulates the circadian oscillation of plasminogen activator inhibitor-1 gene expression. J Biol Chem 2000; 275 (47) 36847-36851
  • 16 Masuda Y, Emoto N, Nonaka H , et al. Role of angiotensin and the clock system in the circadian regulation of plasminogen activator inhibitor-1. Kobe J Med Sci 2009; 54 (6) E264-E271
  • 17 Schoenhard JA, Smith LH, Painter CA, Eren M, Johnson CH, Vaughan DE. Regulation of the PAI-1 promoter by circadian clock components: differential activation by BMAL1 and BMAL2. J Mol Cell Cardiol 2003; 35 (5) 473-481
  • 18 Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998; 17 (11) 3091-3100
  • 19 Guo B, Inoki K, Isono M , et al. MAPK/AP-1-dependent regulation of PAI-1 gene expression by TGF-beta in rat mesangial cells. Kidney Int 2005; 68 (3) 972-984
  • 20 Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J 2004; 18 (7) 816-827
  • 21 Lakos G, Takagawa S, Chen SJ , et al. Targeted disruption of TGF-beta/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am J Pathol 2004; 165 (1) 203-217
  • 22 Samarakoon R, Higgins SP, Higgins CE, Higgins PJ. TGF-beta1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp60(c-src)/EGFR(Y845) and Rho/ROCK signaling. J Mol Cell Cardiol 2008; 44 (3) 527-538
  • 23 Samarakoon R, Higgins PJ. Integration of non-SMAD and SMAD signaling in TGF-beta1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells. Thromb Haemost 2008; 100 (6) 976-983
  • 24 Van Geest RJ, Klaassen I, Vogels IM, Van Noorden CJ, Schlingemann RO. Differential TGF-beta signaling in retinal vascular cells: a role in diabetic retinopathy?. Invest Ophthalmol Vis Sci 2010; 51 (4) 1857-1865
  • 25 Serrano R, Barrenetxe J, Orbe J , et al. Tissue-specific PAI-1 gene expression and glycosylation pattern in insulin-resistant old rats. Am J Physiol Regul Integr Comp Physiol 2009; 297 (5) R1563-R1569
  • 26 Turner NA. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J Mol Cell Cardiol 2016; 94: 189-200
  • 27 Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 2010; 225 (3) 631-637
  • 28 Lee SB, Kalluri R. Mechanistic connection between inflammation and fibrosis. Kidney Int Suppl 2010; (119) S22-S26
  • 29 Zeisberg EM, Kalluri R. Origins of cardiac fibroblasts. Circ Res 2010; 107 (11) 1304-1312
  • 30 Kitamura M, Shimizu M, Ino H , et al. Collagen remodeling and cardiac dysfunction in patients with hypertrophic cardiomyopathy: the significance of type III and VI collagens. Clin Cardiol 2001; 24 (4) 325-329
  • 31 Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI. Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res 1988; 62 (4) 757-765
  • 32 Cufí S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Menendez JA. Metformin against TGFβ-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis. Cell Cycle 2010; 9 (22) 4461-4468
  • 33 Goumans MJ, van Zonneveld AJ, ten Dijke P. Transforming growth factor beta-induced endothelial-to-mesenchymal transition: a switch to cardiac fibrosis?. Trends Cardiovasc Med 2008; 18 (8) 293-298
  • 34 Hertig A, Flier SN, Kalluri R. Contribution of epithelial plasticity to renal transplantation-associated fibrosis. Transplant Proc 2010; 42 (9, Suppl): S7-S12
  • 35 Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007; 117 (3) 524-529
  • 36 Ghosh AK. Factors involved in the regulation of type I collagen gene expression: implication in fibrosis. Exp Biol Med (Maywood) 2002; 227 (5) 301-314
  • 37 Ghosh AK, Varga J. The transcriptional coactivator and acetyltransferase p300 in fibroblast biology and fibrosis. J Cell Physiol 2007; 213 (3) 663-671
  • 38 Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008; 214 (2) 199-210
  • 39 Bitterman PB, Henke CA. Fibroproliferative disorders. Chest 1991; 99 (3, Suppl) 81S-84S
  • 40 Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest 2007; 117 (3) 568-575
  • 41 Brunt EM. Nonalcoholic steatohepatitis. Semin Liver Dis 2004; 24 (1) 3-20
  • 42 Ellmers LJ, Scott NJ, Medicherla S , et al. Transforming growth factor-beta blockade down-regulates the renin-angiotensin system and modifies cardiac remodeling after myocardial infarction. Endocrinology 2008; 149 (11) 5828-5834
  • 43 Ghosh AK, Bradham WS, Gleaves LA , et al. Genetic deficiency of plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged mice: involvement of constitutive transforming growth factor-beta signaling and endothelial-to-mesenchymal transition. Circulation 2010; 122 (12) 1200-1209
  • 44 Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 2007; 117 (3) 557-567
  • 45 Pohlers D, Brenmoehl J, Löffler I , et al. TGF-beta and fibrosis in different organs - molecular pathway imprints. Biochim Biophys Acta 2009; 1792 (8) 746-756
  • 46 Vaughan DE. PAI-1 and TGF-beta: unmasking the real driver of TGF-beta-induced vascular pathology. Arterioscler Thromb Vasc Biol 2006; 26 (4) 679-680
  • 47 Wang W, Koka V, Lan HY. Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology (Carlton) 2005; 10 (1) 48-56
  • 48 Murray LA, Hackett TL, Warner SM , et al. BMP-7 does not protect against bleomycin-induced lung or skin fibrosis. PLoS ONE 2008; 3 (12) e4039
  • 49 Chung EJ, McKay-Corkum G, Chung S , et al. Truncated plasminogen activator inhibitor-1 protein protects from pulmonary fibrosis mediated by irradiation in a murine model. Int J Radiat Oncol Biol Phys 2016; 94 (5) 1163-1172
  • 50 Osterholzer JJ, Christensen PJ, Lama V , et al. PAI-1 promotes the accumulation of exudate macrophages and worsens pulmonary fibrosis following type II alveolar epithelial cell injury. J Pathol 2012; 228 (2) 170-180
  • 51 McCormick LL, Zhang Y, Tootell E, Gilliam AC. Anti-TGF-beta treatment prevents skin and lung fibrosis in murine sclerodermatous graft-versus-host disease: a model for human scleroderma. J Immunol 1999; 163 (10) 5693-5699
  • 52 Sun M, Chen M, Dawood F , et al. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 2007; 115 (11) 1398-1407
  • 53 Lijnen P, Petrov V. Induction of cardiac fibrosis by aldosterone. J Mol Cell Cardiol 2000; 32 (6) 865-879
  • 54 Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by angiotensin II. Methods Find Exp Clin Pharmacol 2000; 22 (10) 709-723
  • 55 Rohrer DK, Desai KH, Jasper JR , et al. Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci U S A 1996; 93 (14) 7375-7380
  • 56 Farivar RS, Crawford DC, Chobanian AV, Brecher P. Effect of angiotensin II blockade on the fibroproliferative response to phenylephrine in the rat heart. Hypertension 1995; 25 (4 Pt 2): 809-813
  • 57 Ma LJ, Fogo AB. PAI-1 and kidney fibrosis. Front Biosci (Landmark Ed) 2009; 14: 2028-2041
  • 58 Ma J, Weisberg A, Griffin JP, Vaughan DE, Fogo AB, Brown NJ. Plasminogen activator inhibitor-1 deficiency protects against aldosterone-induced glomerular injury. Kidney Int 2006; 69 (6) 1064-1072
  • 59 Oda T, Jung YO, Kim HS , et al. PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int 2001; 60 (2) 587-596
  • 60 Krag S, Danielsen CC, Carmeliet P, Nyengaard J, Wogensen L. Plasminogen activator inhibitor-1 gene deficiency attenuates TGF-beta1-induced kidney disease. Kidney Int 2005; 68 (6) 2651-2666
  • 61 Wang H, Zhang Y, Heuckeroth RO. PAI-1 deficiency reduces liver fibrosis after bile duct ligation in mice through activation of tPA. FEBS Lett 2007; 581 (16) 3098-3104
  • 62 Fujii T, Fuchs BC, Yamada S , et al. Mouse model of carbon tetrachloride induced liver fibrosis: histopathological changes and expression of CD133 and epidermal growth factor. BMC Gastroenterol 2010; 10: 79
  • 63 Asano Y, Markiewicz M, Kubo M, Szalai G, Watson DK, Trojanowska M. Transcription factor Fli1 regulates collagen fibrillogenesis in mouse skin. Mol Cell Biol 2009; 29 (2) 425-434
  • 64 Denton CP, Lindahl GE, Khan K , et al. Activation of key profibrotic mechanisms in transgenic fibroblasts expressing kinase-deficient type II Transforming growth factor-beta receptor (TbetaRIIdeltak). J Biol Chem 2005; 280 (16) 16053-16065
  • 65 Xu Z, Castellino FJ, Ploplis VA. Plasminogen activator inhibitor-1 (PAI-1) is cardioprotective in mice by maintaining microvascular integrity and cardiac architecture. Blood 2010; 115 (10) 2038-2047
  • 66 Frankel SK, Schwarz MI. Update in idiopathic pulmonary fibrosis. Curr Opin Pulm Med 2009; 15 (5) 463-469
  • 67 Sisson TH, Simon RH. The plasminogen activation system in lung disease. Curr Drug Targets 2007; 8 (9) 1016-1029
  • 68 Eitzman DT, McCoy RD, Zheng X , et al. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest 1996; 97 (1) 232-237
  • 69 Hattori N, Degen JL, Sisson TH , et al. Bleomycin-induced pulmonary fibrosis in fibrinogen-null mice. J Clin Invest 2000; 106 (11) 1341-1350
  • 70 Lazar MH, Christensen PJ, Du M , et al. Plasminogen activator inhibitor-1 impairs alveolar epithelial repair by binding to vitronectin. Am J Respir Cell Mol Biol 2004; 31 (6) 672-678
  • 71 Arciniegas E, Frid MG, Douglas IS, Stenmark KR. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2007; 293 (1) L1-L8
  • 72 Bauman KA, Wettlaufer SH, Okunishi K , et al. The antifibrotic effects of plasminogen activation occur via prostaglandin E2 synthesis in humans and mice. J Clin Invest 2010; 120 (6) 1950-1960
  • 73 Chuang-Tsai S, Sisson TH, Hattori N , et al. Reduction in fibrotic tissue formation in mice genetically deficient in plasminogen activator inhibitor-1. Am J Pathol 2003; 163 (2) 445-452
  • 74 Senoo T, Hattori N, Tanimoto T , et al. Suppression of plasminogen activator inhibitor-1 by RNA interference attenuates pulmonary fibrosis. Thorax 2010; 65 (4) 334-340
  • 75 Zhang YP, Li WB, Wang WL , et al. siRNA against plasminogen activator inhibitor-1 ameliorates bleomycin-induced lung fibrosis in rats. Acta Pharmacol Sin 2012; 33 (7) 897-908
  • 76 Sisson TH, Hattori N, Xu Y, Simon RH. Treatment of bleomycin-induced pulmonary fibrosis by transfer of urokinase-type plasminogen activator genes. Hum Gene Ther 1999; 10 (14) 2315-2323
  • 77 Swaisgood CM, French EL, Noga C, Simon RH, Ploplis VA. The development of bleomycin-induced pulmonary fibrosis in mice deficient for components of the fibrinolytic system. Am J Pathol 2000; 157 (1) 177-187
  • 78 Wilberding JA, Ploplis VA, McLennan L , et al. Development of pulmonary fibrosis in fibrinogen-deficient mice. Ann N Y Acad Sci 2001; 936: 542-548
  • 79 Courey AJ, Horowitz JC, Kim KK , et al. The vitronectin-binding function of PAI-1 exacerbates lung fibrosis in mice. Blood 2011; 118 (8) 2313-2321
  • 80 Zhang YP, Wang WL, Liu J , et al. Plasminogen activator inhibitor-1 promotes the proliferation and inhibits the apoptosis of pulmonary fibroblasts by Ca(2+) signaling. Thromb Res 2013; 131 (1) 64-71
  • 81 Omori K, Hattori N, Senoo T , et al. Inhibition of plasminogen activator inhibitor-1 attenuates transforming growth factor-β-dependent epithelial mesenchymal transition and differentiation of fibroblasts to myofibroblasts. PLoS ONE 2016; 11 (2) e0148969
  • 82 Boe AE, Eren M, Morales-Nebreda L , et al. Nitric oxide prevents alveolar senescence and emphysema in a mouse model. PLoS ONE 2015; 10 (3) e0116504
  • 83 Kim WR, Brown Jr RS, Terrault NA, El-Serag H. Burden of liver disease in the United States: summary of a workshop. Hepatology 2002; 36 (1) 227-242
  • 84 Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A 1985; 82 (24) 8681-8685
  • 85 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115 (2) 209-218
  • 86 Gong W, Roth S, Michel K, Gressner AM. Isoforms and splice variant of transforming growth factor beta-binding protein in rat hepatic stellate cells. Gastroenterology 1998; 114 (2) 352-363
  • 87 Gressner AM. Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: a key event in hepatic fibrogenesis. Kidney Int Suppl 1996; 54: S39-S45
  • 88 Targher G, Bertolini L, Scala L , et al. Plasma PAI-1 levels are increased in patients with nonalcoholic steatohepatitis. Diabetes Care 2007; 30 (5) e31-e32
  • 89 Arteel GE. New role of plasminogen activator inhibitor-1 in alcohol-induced liver injury. J Gastroenterol Hepatol 2008; 23 (Suppl. 01) S54-S59
  • 90 Bergheim I, Guo L, Davis MA, Duveau I, Arteel GE. Critical role of plasminogen activator inhibitor-1 in cholestatic liver injury and fibrosis. J Pharmacol Exp Ther 2006; 316 (2) 592-600
  • 91 Clouthier DE, Comerford SA, Hammer RE. Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-beta1 transgenic mice. J Clin Invest 1997; 100 (11) 2697-2713
  • 92 Chanda D, Lee CH, Kim YH , et al. Fenofibrate differentially regulates plasminogen activator inhibitor-1 gene expression via adenosine monophosphate-activated protein kinase-dependent induction of orphan nuclear receptor small heterodimer partner. Hepatology 2009; 50 (3) 880-892
  • 93 García L, Hernández I, Sandoval A , et al. Pirfenidone effectively reverses experimental liver fibrosis. J Hepatol 2002; 37 (6) 797-805
  • 94 Hu PF, Zhu YW, Zhong W , et al. Inhibition of plasminogen activator inhibitor-1 expression by siRNA in rat hepatic stellate cells. J Gastroenterol Hepatol 2008; 23 (12) 1917-1925
  • 95 Strutz F, Müller GA. On the progression of chronic renal disease. Nephron 1995; 69 (4) 371-379
  • 96 Bohle A, Müller GA, Wehrmann M, Mackensen-Haen S, Xiao JC. Pathogenesis of chronic renal failure in the primary glomerulopathies, renal vasculopathies, and chronic interstitial nephritides. Kidney Int Suppl 1996; 54: S2-S9
  • 97 Efstratiadis G, Divani M, Katsioulis E, Vergoulas G. Renal fibrosis. Hippokratia 2009; 13 (4) 224-229
  • 98 Małgorzewicz S, Skrzypczak-Jankun E, Jankun J. Plasminogen activator inhibitor-1 in kidney pathology (Review). Int J Mol Med 2013; 31 (3) 503-510
  • 99 Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol 2000; 15 (3–4) 290-301
  • 100 Han JY, Kim YJ, Kim L , et al. PPARgamma agonist and angiotensin II receptor antagonist ameliorate renal tubulointerstitial fibrosis. J Korean Med Sci 2010; 25 (1) 35-41
  • 101 Cheng X, Zhou Q, Lin S, Wu R. Fosinopril and valsartan intervention in gene expression of Klotho, MMP-9, TIMP-1, and PAI-1 in the kidney of spontaneously hypertensive rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2010; 35 (10) 1048-1056
  • 102 Li Y, Wen X, Spataro BC, Hu K, Dai C, Liu Y. Hepatocyte growth factor is a downstream effector that mediates the antifibrotic action of peroxisome proliferator-activated receptor-gamma agonists. J Am Soc Nephrol 2006; 17 (1) 54-65
  • 103 Ghosh AK, Murphy SB, Kishore R, Vaughan DE. Global gene expression profiling in PAI-1 knockout murine heart and kidney: molecular basis of cardiac-selective fibrosis. PLoS ONE 2013; 8 (5) e63825
  • 104 Rockey DC, Bell PD, Hill JA. Fibrosis—a common pathway to organ injury and failure. N Engl J Med 2015; 373 (1) 96
  • 105 Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 2007; 87 (4) 1285-1342
  • 106 Wu KC, Weiss RG, Thiemann DR , et al. Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 2008; 51 (25) 2414-2421
  • 107 Ambale-Venkatesh B, Lima JA. Cardiac MRI: a central prognostic tool in myocardial fibrosis. Nat Rev Cardiol 2015; 12 (1) 18-29
  • 108 Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 2011; 57 (8) 891-903
  • 109 de Leeuw N, Ruiter DJ, Balk AH, de Jonge N, Melchers WJ, Galama JM. Histopathologic findings in explanted heart tissue from patients with end-stage idiopathic dilated cardiomyopathy. Transpl Int 2001; 14 (5) 299-306
  • 110 Go AS, Mozaffarian D, Roger VL , et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 2014; 129 (3) e28-e292
  • 111 Takeshita K, Hayashi M, Iino S , et al. Increased expression of plasminogen activator inhibitor-1 in cardiomyocytes contributes to cardiac fibrosis after myocardial infarction. Am J Pathol 2004; 164 (2) 449-456
  • 112 Eren M, Painter CA, Atkinson JB, Declerck PJ, Vaughan DE. Age-dependent spontaneous coronary arterial thrombosis in transgenic mice that express a stable form of human plasminogen activator inhibitor-1. Circulation 2002; 106 (4) 491-496
  • 113 Moriwaki H, Stempien-Otero A, Kremen M, Cozen AE, Dichek DA. Overexpression of urokinase by macrophages or deficiency of plasminogen activator inhibitor type 1 causes cardiac fibrosis in mice. Circ Res 2004; 95 (6) 637-644
  • 114 Ducharme A, Frantz S, Aikawa M , et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 2000; 106 (1) 55-62
  • 115 Matsusaka H, Ide T, Matsushima S , et al. Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension 2006; 47 (4) 711-717
  • 116 Kortlever RM, Nijwening JH, Bernards R. Transforming growth factor-beta requires its target plasminogen activator inhibitor-1 for cytostatic activity. J Biol Chem 2008; 283 (36) 24308-24313
  • 117 Ghosh AK, Nagpal V, Covington JW, Michaels MA, Vaughan DE. Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cell Signal 2012; 24 (5) 1031-1036
  • 118 Ploplis VA, Balsara R, Sandoval-Cooper MJ , et al. Enhanced in vitro proliferation of aortic endothelial cells from plasminogen activator inhibitor-1-deficient mice. J Biol Chem 2004; 279 (7) 6143-6151
  • 119 Pedroja BS, Kang LE, Imas AO, Carmeliet P, Bernstein AM. Plasminogen activator inhibitor-1 regulates integrin alphavbeta3 expression and autocrine transforming growth factor beta signaling. J Biol Chem 2009; 284 (31) 20708-20717
  • 120 Koitabashi N, Danner T, Zaiman AL , et al. Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload. J Clin Invest 2011; 121 (6) 2301-2312
  • 121 Kaikita K, Fogo AB, Ma L, Schoenhard JA, Brown NJ, Vaughan DE. Plasminogen activator inhibitor-1 deficiency prevents hypertension and vascular fibrosis in response to long-term nitric oxide synthase inhibition. Circulation 2001; 104 (7) 839-844
  • 122 Boe AE, Eren M, Murphy SB , et al. Plasminogen activator inhibitor-1 antagonist TM5441 attenuates Nω-nitro-L-arginine methyl ester-induced hypertension and vascular senescence. Circulation 2013; 128 (21) 2318-2324