Synlett 2016; 27(19): 2742-2746
DOI: 10.1055/s-0036-1588069
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Wacker-Type Oxidation of N-Boc Indoles under Mild Conditions

Xiao-Yu Zhou*
a   Department of Chemistry and Chemical Engineering, Liupanshuui Normal University, Liupanshui, 553004, P. R. of China   Email: zhouxiaoyu20062006@126.com
,
Xia Chen
a   Department of Chemistry and Chemical Engineering, Liupanshuui Normal University, Liupanshui, 553004, P. R. of China   Email: zhouxiaoyu20062006@126.com
,
Liang-Guang Wang
b   College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 14 July 2016

Accepted after revision: 15 August 2016

Publication Date:
30 August 2016 (online)


Abstract

Palladium-catalyzed Wacker-type oxidation of N-Boc indoles for the synthesis of 3-oxyindolines has been developed. The palladium-catalyzed Wacker-type oxidation of N-Boc indoles can readily occur in MeCN using H2O2 as oxidant. And 3-oxyindolines were obtained in medium to high yield. Furtherly, the mechanism of palladium-catalyzed Wacker-type oxidation of N-Boc indoles was proposed.

Supporting Information

 
  • References and Notes

    • 1a Chen I.-S, Chen H.-F, Cheng M.-J, Chang Y.-L, Teng C.-M, Tsutomu I, Chen J.-J, Tsai I.-L. J. Nat. Prod. 2001; 64: 1143
    • 1b Hibino S, Choshi T. Nat. Prod. Rep. 2001; 18: 66
    • 1c Somei M, Yamada F. Nat. Prod. Rep. 2003; 20: 216
    • 1d Kawasaki T, Higuchi K. Nat. Prod. Rep. 2005; 22: 761
    • 1e O’Connor SE, Maresh JJ. Nat. Prod. Rep. 2006; 23: 532
    • 1f Higuchi K, Kawasaki T. Nat. Prod. Rep. 2007; 24: 843
    • 1g Teichert A, Schmidt J, Porzel A, Arnold N, Wessjohann LJ. Nat. Prod. 2008; 71: 1092
    • 1h Höfle G, Böhlendorf B, Fecker T, Sasse F, Kunze BJ. Nat. Prod. 2008; 71: 1967
    • 1i Ishikura M, Yamada K. Nat. Prod. Rep. 2009; 26: 803
    • 1j Li S.-M. Nat. Prod. Rep. 2010; 27: 57
    • 1k Ishikura M, Yamada K, Abe T. Nat. Prod. Rep. 2010; 27: 1630
    • 2a Bur SK, Padwa A. Chem. Rev. 2004; 104: 2401
    • 2b Mąkosza M, Wojciechowski K. Chem. Rev. 2004; 104: 2631
    • 2c Busto E, Gotor-Fernández V, Gotor V. Chem. Rev. 2011; 111: 3998
    • 2d Zhang H, Hu R.-B, Liu N, Li S.-X, Yang S.-D. Org. Lett. 2016; 18: 28
    • 2e Morimoto N, Morioku K, Suzuki H, Takeuchi Y, Nishina Y. Org. Lett. 2016; 18: 2020
    • 2f Petrone DA, Kondo M, Zeidan N, Lautens M. Chem. Eur. J. 2016; 22: 5684
    • 3a Malapel-Andrieu B, Mérour J.-Y. Tetrahedron 1998; 54: 11095
    • 3b Kawasaki T, Enoki H, Matsumura K, Ohyama M, Inagawa M, Sakamoto M. Org. Lett. 2000; 2: 3027
    • 3c Zhang P, Bierer DE. J. Nat. Prod. 2000; 63: 643
    • 3d Liu Y, McWhorter WW. Jr. J. Am. Soc. Chem. 2003; 125: 4240
    • 3e Liu Y, McWhorter WW. Jr. J. Org. Chem. 2003; 68: 2618
    • 3f Grougnet R, Magiatis P, Fokialakis N, Mitaku S, Skaltsounis A.-L, Tillequin F, Sévenet T, Litaudon MJ. Nat. Prod. 2005; 68: 1083
    • 3g Wyrembak PN, Hamilton AD. J. Am. Soc. Chem. 2009; 131: 4566
    • 3h Matsumoto M, Samata D, Akazome M, Ogura K. Tetrahedron Lett. 2009; 50: 111
    • 4a Zhang X, Foote CS. J. Am. Chem. Soc. 1993; 115: 8867
    • 4b Colandrea V, Rajaraman JS, Jimenez LS. Org. Lett. 2003; 5: 785
  • 5 Desarbre E, Savelon L, Cornec O, Mérour JY. Tetrahedron 1996; 52: 2983
    • 6a Feigelson GB, Danishefsky SJ. J. Org. Chem. 1988; 53: 3392
    • 6b Gharpure SJ, Sathiyanarayanan AM. Chem. Commun. 2011; 47: 3625
  • 7 Kiraz CI. A, Emge TJ, Jimenaz LS. J. Org. Chem. 2004; 69: 2200
  • 8 Zhang J.-L, Che C.-M. Chem. Eur. J. 2005; 11: 3899
  • 9 Guchhait SK, Chaudhary V, Rana VA, Priyadarshani G, Kandekar S, Kashyap M. Org. Lett. 2016; 18: 1534
    • 10a Sigman MS, Jensen DR. Acc. Chem. Res. 2006; 39: 221
    • 10b Sigman MS, Werner EW. Acc. Chem. Res. 2012; 45: 874
    • 10c Muzart J. Tetrahedron 2007; 63: 7505
    • 11a Mimoun H, Charpentier R, Mitschler A, Fischer J, Weiss R. J. Am. Chem. Soc. 1980; 102: 1047
    • 11b Roussel M, Mimoun H. J. Org. Chem. 1980; 45: 5387

      Sigman’s work of Pd-catalyzed Wacker oxidation:
    • 12a Cornell CN, Sigman MS. J. Am. Chem. Soc. 2005; 127: 2796
    • 12b Zhang Y, Sigman MS. J. Am. Chem. Soc. 2007; 129: 3076
    • 12c Michel BW, Camelio AM, Cornell CN, Sigman MS. J. Am. Chem. Soc. 2009; 131: 6076
    • 12d Jensen KH, Pathak TP, Zhang Y, Sigman MS. J. Am. Chem. Soc. 2009; 131: 17074
    • 12e Anderson BJ, Keith JA, Sigman MS. J. Am. Chem. Soc. 2010; 132: 11872
    • 12f Jensen KH, Webb JD, Sigman MS. J. Am. Chem. Soc. 2010; 132: 17471
    • 12g Michel BW, McCombs JR, Winkler A, Sigman MS. Angew. Chem. Int. Ed. 2010; 49: 7312
    • 12h Michel BW, Steffens LD, Sigman MS. J. Am. Chem. Soc. 2011; 133: 8317
  • 13 Weiner B, Baeza A, Jerphagnon B, Feringa BL. J. Am. Chem. Soc. 2009; 131: 9473
    • 14a Mitsudome T, Umetani T, Nosaka N, Mori K, Mizugaki T, Ebitani K, Kaneda K. Angew. Chem. Int. Ed. 2006; 45: 481
    • 14b Mitsudome T, Mizumoto K, Mizugaki T, Jitsukawa K, Kaneda K. Angew. Chem. Int. Ed. 2010; 49: 1238
  • 15 Procedure for Wacker-Type Oxidation of N-Boc Indoles A mixture of N-Boc indole 1 (0.25 mmol) and Pd(acac)2 (4.6 mg, 0.015 mmol, 6.0 mol%) in MeCN (3 mL) was added into a Schlenk flask (25 mL) and stirred at room temperature, followed by addition of NaIO4 (80.2 mg, 0.375 mmol, 1.5 equiv), and the mixture was stirred at 70 °C until the reaction was finished. Then the solvent was evaporated under reduced pressure, and the residue was purified by column chromatography. tert-Butyl 2-Methyl-3-oxoindoline-1-carboxylate (2a) Yield 94%, 56.9 mg, colorless oil. 1H NMR (400 MHz, CDCl3): δ = 1.54–1.61 (m, 12 H), 4.22–4.24 (m, 1 H), 7.13 (dd, J = 7.6, 8.5 Hz, 1 H), 7.61–7.72 (m, 1 H), 7.71 (d, J = 7.6 Hz, 1 H), 8.17 (br, 1 H). 13C NMR (100 MHz, CDCl3): δ = 17.0, 28.3, 61.7, 116.9, 123.0, 124.0, 137.1, 150.9, 199.6. IR (neat): 2977, 2932, 1712, 1606, 1468, 1377, 1296, 1275, 1159, 1095, 1054, 978, 850, 757, 737 cm–1. HRMS (EI): m/z calcd for C14H17NO3: 247.1208 [M]+; found: 247.1198.