Synthesis 2017; 49(07): 1583-1596
DOI: 10.1055/s-0036-1588126
paper
© Georg Thieme Verlag Stuttgart · New York

Boric Acid Catalyzed Direct Amidation between Amino-Azaarenes and Carboxylic Acids

Fan Yun
State Key Laboratory of Chemical Resource Engineering, Organic and Medicinal Chemistry Division, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: tangpw@mail.buct.edu.cn   Email: yuanqp@mail.buct.edu.cn
,
Chunhui Cheng
State Key Laboratory of Chemical Resource Engineering, Organic and Medicinal Chemistry Division, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: tangpw@mail.buct.edu.cn   Email: yuanqp@mail.buct.edu.cn
,
Jing Zhang
State Key Laboratory of Chemical Resource Engineering, Organic and Medicinal Chemistry Division, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: tangpw@mail.buct.edu.cn   Email: yuanqp@mail.buct.edu.cn
,
Jingxuan Li
State Key Laboratory of Chemical Resource Engineering, Organic and Medicinal Chemistry Division, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: tangpw@mail.buct.edu.cn   Email: yuanqp@mail.buct.edu.cn
,
Xia Liu
State Key Laboratory of Chemical Resource Engineering, Organic and Medicinal Chemistry Division, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: tangpw@mail.buct.edu.cn   Email: yuanqp@mail.buct.edu.cn
,
Rui Xie
State Key Laboratory of Chemical Resource Engineering, Organic and Medicinal Chemistry Division, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: tangpw@mail.buct.edu.cn   Email: yuanqp@mail.buct.edu.cn
,
Pingwah Tang*
State Key Laboratory of Chemical Resource Engineering, Organic and Medicinal Chemistry Division, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: tangpw@mail.buct.edu.cn   Email: yuanqp@mail.buct.edu.cn
,
Qipeng Yuan*
State Key Laboratory of Chemical Resource Engineering, Organic and Medicinal Chemistry Division, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: tangpw@mail.buct.edu.cn   Email: yuanqp@mail.buct.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 29 September 2016

Accepted after revision: 29 November 2016

Publication Date:
21 December 2016 (online)


These authors contributed equally to this work.

Abstract

A novel and facile boric acid catalyzed direct amidation between amino-azaarene compounds and carboxylic acids has been developed. The amidation proceeded cleanly and provided good to excellent yields of the desired amides. Boric acid is a green and inexpensive catalyst. We have also found that N,N,N′,N′-tetramethylpropane-1,3-diamine acted as an additive accelerating this boric acid catalyzed amidation. A mixed acid anhydride is postulated to be the active intermediate responsible for this successful amidation. This direct amidation is an atom- and step-economical reaction.

Supporting Information

 
  • References

  • 1 Arnold K, Davies B, Giles RL, Grosjean C, Smith CG. E, Witting A. Adv. Synth. Catal. 2006; 348: 813
  • 2 Charville H, Jackson D, Hodges G, Whiting A. Chem. Commun. 2010; 46: 813
  • 3 Dale DJ, Dunn PJ, Golightly C, Hughes ML, Levett PC, Pearce AK, Searle PM, Ward G, Wood AS. Org. Process. Res. Dev. 2000; 4: 17
  • 4 Kelly SE, Lacour TG. Synth. Commun. 1975; 22: 714
  • 5 Tani J, Oine T, Inoue I. Synthesis 1975; 714
  • 6 Trapani G, Reno A, Laytofa A. Synthesis 1983; 1013
  • 7 Pelter A, Levitt TE, Nelson P. Tetrahedron 1970; 26: 1539
  • 8 Collum DB, Chen SC, Ganem B. J. Org. Chem. 1978; 43: 4393
  • 9 Pelter A, Levitt TE. Tetrahedron 1970; 26: 1545
  • 10 Carlson R, Lundstedt T, Nordahl A, Rochazka MP. Acta Chem. Scand., Ser. B. 1986; 40: 522
  • 11 Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer LJr, Lindeman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zhang T. Green Chem. 2007; 9: 535

    • For a review on this topic, see:
    • 12a Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
    • 12b Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 12c Pattabiraman VR, Bode JW. Nature 2011; 480: 471
  • 13 Han SY, Kim A. Tetrahedron 2004; 60: 2447
  • 14 Joullie MM, Lassen KM. ARKIVOC 2004; (viii): 189
  • 15 Kim YA, Han SY. Bull. Korean Chem. Soc. 2000; 21: 943
  • 16 Lundberg H, Tinnis F, Adolfsson H. Synlett 2012; 23: 2201
  • 17 Allen CL, Chhatwal AR, Williams JM. J. Chem. Commun. 2012; 48: 666
  • 18 Lundberg H, Tinnis F, Adolfsson H. Chem. Eur. J. 2012; 18: 3822

    • For reviews on this topic, see:
    • 19a Lundberg H, Tinnis F, Selander N, Adolfsson H. Chem. Soc. Rev. 2014; 43: 2714
    • 19b Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
    • 19c Al-Zoubi RM, Marion O, Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
    • 19d Maki T, Ishihara K, Yamamoto H. Org. Lett. 2005; 7: 5043
  • 20 Lanigan RM, Starkov P, Sheppard TD. J. Org. Chem. 2013; 78: 4512
  • 21 Tang PW. Org. Synth. 2005; 81: 262
  • 22 Tang PW. Org. Synth. 2012; 89: 432
  • 23 Mylavarapu RK, Kondaiah GC. M, Kolla N, Veeramlla R, Koilkonda P, Bhattacharya A, Bandichhor R. Org. Process Res. Dev. 2007; 11: 1065
  • 24 Bhattacharya A, Bandichhor R. Green Technologies in the Generic Pharmaceutical Industry . In Green Chemistry in the Pharmaceutical Industry . Dunn P, Wells A, Williams MT. Wiley-VCH; Weinheim: 2011. Chap. 14, 289
  • 25 Anderson JE, Cobb J, Davis R, Dunn PJ, Fitzgerald RN, Pettman AJ. Industrial Applications of Boric Acid and Boronic Acid-Catalyzed Direct Amidation Reactions. In Sustainable Catalysis, Challenges and Practices for the Pharmaceutical and Fine Chemical Industries. Dunn PJ, Hii KK, Krische MJ, Williams MT. Wiley; Hoboken: 2013: 7398

    • For reviews on this topic, see:
    • 26a Zhang XX, Teo WT, Chan PW. H. J. Organomet. Chem. 2011; 696: 331
    • 26b Glomb MA, Pfahler C. J. Biol. Chem. 2001; 276: 41638
    • 26c Wang GW, Yuan TT, Li DD. Angew. Chem. Int. Ed. 2011; 50: 1380
    • 26d Kung PP, Huang BW, Zhang G, Zhou JZ, Wang J, Digits JA, Skaptason J, Yamazaki S, Neul D, Zientek M, Elleraas J, Mehta P, Yin MJ, Hickey MJ, Gajiwala KS, Rodgers C, Davies JF, Gehring R. J. Med. Chem. 2010; 53: 499
    • 26e Armelin E, Franco L, Rodriguez-Galan A, Puiggali J. Macromol. Chem. Phys. 2002; 203: 48
  • 27 Xie R, Shi JH, Qu Y, Tang PW, Wu XY, Yang M, Yuan QP. Med. Chem. 2015; 11: 636
  • 28 Oger F, Lecorgne A, Sala E, Nardese V, Demay F, Chevance S, Desravines DC, Aleksandrova N, Le Guevel R, Lorenzi S, Beccari A, Barath P, Hart D, Bondon A, Carettoni D, Simonneaux G, Salbert G. J. Med. Chem. 2010; 53: 1937
  • 29 Remiszewski SW, Sambucetti LC, Atadja P, Bair KW, Cornell WD, Green MA, Howell KL, Jung M, Kwon P, Trogani N, Walker H. J. Med. Chem. 2002; 45: 753
  • 30 Letsinger RL, Dandegaonker SH. J. Am. Chem. Soc. 1959; 81: 498
  • 31 Letsinger RL, Maclean DB. J. Am. Chem. Soc. 1963; 85: 2230
  • 32 Coghlan SW, Giles RL, Howard AK, Patrick GF, Probert MR, Smith GE, Whiting A. J. Organomet. Chem. 2005; 690: 4784
  • 33 Toyota S, Futawaka T, Asakura M, Ikeda H, Oki M. Organometallics 1998; 17: 4155
  • 34 Rowlands GJ. Tetrahedron 2001; 57: 1865
  • 35 Srinivas, P.; Gentry, E. J.; Mitscher, L. A. 223rd ACS National Meeting Division of Organic Chem., Orlando, FL, USA, April 7–11 2002, Poster 237.
  • 36 Ishihara K In Lewis Acids in Organic Synthesis . Yamamto H. Wiley-VCH; Weinheim: 1996: 89