Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(17): 3916-3924
DOI: 10.1055/s-0036-1588160
DOI: 10.1055/s-0036-1588160
special topic
Cobalt-Catalyzed Perfluoroalkylation of Quinoline Amides at the C5 Position
Further Information
Publication History
Received: 16 January 2017
Accepted after revision: 06 March 2017
Publication Date:
29 March 2017 (online)
![](https://www.thieme-connect.de/media/synthesis/201717/lookinside/thumbnails/ss-2017-c0033-st_10-1055_s-0036-1588160-1.jpg)
Published as part of the Special Topic Cobalt in Organic Synthesis
Abstract
An efficient protocol has been developed for the cobalt-catalyzed perfluoroalkylation of 8-aminoquinoline scaffolds. In the presence of 5 mol% of Co(acac)3 catalyst, the desired products were obtained with exclusive substitution at the C5 position of the quinoline ring after 4 hours. The reaction shows high efficiency and good tolerance for a broad range of functional groups, affording the corresponding products in moderate to good yields.
Key words
cobalt - 8-aminoquinolines - catalysis - fluorine - perfluoroalkyl iodides - perfluoroalkylationSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588160.
- Supporting Information
-
References
- 1a Uneyama K. Organofluorine Chemistry . Blackwell; Oxford: 2006
- 1b Müller K. Faeh C. Diederich F. Science 2007; 317: 1881
- 1c Filler R. Kobayashi Y. Yagupolskii LM. Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications. Elsevier; New York: 1993
- 2a Egami H. Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
- 2b Hull KL. Anani WQ. Sanford MS. J. Am. Chem. Soc. 2006; 128: 7134
- 2c Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 3 Pike VW. Aigbirhio FI. J. Chem. Soc., Chem. Commun. 1995; 2215
- 4 Watson DA. Su M. Teverovskiy G. Zhang Y. García-Fortanet J. Kinzel T. Buchwald SL. Science 2009; 325: 1661
- 5 Furuya T. Ritter T. Org. Lett. 2009; 11: 2860
- 6 Fier PS. Hartwig JF. J. Am. Chem. Soc. 2012; 134: 10795
- 7a Roy S. Gregg BT. Gribble GW. Le VD. Roy S. Tetrahedron 2011; 67: 2161
- 7b Tomashenko OA. Grushin VV. Chem. Rev. 2011; 111: 4475
- 7c Chu L. Qing FL. Org. Lett. 2010; 12: 5060
- 7d Zeng Y. Zhang L. Zhao Y. Ni C. Zhao J. Hu J. J. Am. Chem. Soc. 2013; 135: 2955
- 7e Wu Z. He Y. Ma C. Zhou X. Liu X. Li Y. Hu T. Wen P. Huang G. Asian J. Org. Chem. 2016; 5: 724
- 8a Carroll FI. Blackwell JT. Philip A. Twine CE. J. Med. Chem. 1976; 19: 1111
- 8b Shiraki H. Kozar MP. Melendez V. Hudson TH. Ohrt C. Magill AJ. Lin AJ. J. Med. Chem. 2011; 54: 131
- 8c Pal P. Rastogi SK. Gibson CM. Aston DE. Branen AL. Bitterwolf TE. ACS Appl. Mater. Interfaces 2011; 3: 279
- 9a LaMontagne MP. Blumbergs P. Smith DC. J. Med. Chem. 1989; 32: 1728
- 9b Gershon H. Clarke DD. Gershon M. Monatsh. Chem. 1994; 125: 723
- 9c O’Neill PM. Storr RC. Park BK. Tetrahedron 1998; 54: 4615
- 10a Arockiam PB. Bruneau C. Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 10b Ackermann L. Chem. Rev. 2011; 111: 1315
- 10c Li BJ. Shi ZJ. Chem. Soc. Rev. 2012; 41: 5588
- 10d Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
- 10e Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
- 10f Shin K. Kim H. Chang S. Acc. Chem. Res. 2015; 48: 1040
- 11 Suess AM. Ertem MZ. Cramer CJ. Stahl SS. J. Am. Chem. Soc. 2013; 135: 9797
- 12 Cong X. Zeng X. Org. Lett. 2014; 16: 3716
- 13 Zhu L. Qiu R. Cao X. Xiao S. Xu X. Au CT. Yin SF. Org. Lett. 2015; 17: 5528
- 14a Liang H. Jiang K. Ding W. Yuan Y. Shuai L. Chen Y. Wei Y. Chem. Commun. 2015; 51: 16928
- 14b Qiao H. Sun S. Yang F. Zhu Y. Zhu W. Dong Y. Wu Y. Kong X. Jiang L. Wu Y. Org. Lett. 2015; 17: 6086
- 14c Wei J. Jiang J. Xiao X. Lin D. Deng Y. Ke Z. Jiang H. Zeng W. J. Org. Chem. 2016; 81: 946
- 14d Xu J. Shen C. Zhu X. Zhang P. Ajitha MJ. Huang K. An Z. Liu X. Chem. Asian J. 2016; 11: 882
- 14e Li J. Weng J. Lu G. Chan AS. C. Tetrahedron Lett. 2016; 57: 2121
- 15a Xu J. Zhu X. Zhou G. Ying B. Ye P. Su L. Shen C. Zhang P. Org. Biomol. Chem. 2016; 14: 3016
- 15b Wu C. Zhou H. Wu Q. He M. Li P. Su Q. Mu Y. Synlett 2016; 27: 868
- 16 Sahoo H. Reddy MK. Ramakrishna I. Baidya M. Chem. Eur. J. 2016; 22: 1592
- 17 Whiteoak CJ. Planas O. Company A. Ribas X. Adv. Synth. Catal. 2016; 358: 1679
- 18 Chen H. Li P. Wang M. Wang L. Org. Lett. 2016; 18: 4794
- 19a Gao K. Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
- 19b Ackermann L. J. Org. Chem. 2014; 79: 8948
- 19c Moselage M. Li J. Ackermann L. ACS Catal. 2016; 6: 498
- 19d Wei D. Zhu X. Niu J.-L. Song M.-P. ChemCatChem 2016; 8: 1242
- 20a Grigorjeva L. Daugulis O. Org. Lett. 2015; 17: 1204
- 20b Ma W. Ackermann L. ACS Catal. 2015; 5: 2822
- 20c Wu X. Yang K. Zhao Y. Sun H. Li G. Ge H. Nat. Commun. 2015; 6: 6462
- 20d Planas O. Whiteoak CJ. Company A. Ribas X. Adv. Synth. Catal. 2015; 357: 4003
- 20e Hummel JR. Ellman JA. J. Am. Chem. Soc. 2015; 137: 490
- 20f Zhang J. Chen H. Lin C. Liu Z. Wang C. Zhang Y. J. Am. Chem. Soc. 2015; 137: 12990
- 20g Kalsi D. Sundararaju B. Org. Lett. 2015; 17: 6118
- 20h Ozkal E. Cacherat B. Morandi B. ACS Catal. 2015; 5: 6458
- 20i Sun B. Yoshino T. Kanai M. Matsunaga S. Angew. Chem. Int. Ed. 2015; 54: 12968
- 20j Park J. Chang S. Angew. Chem. Int. Ed. 2015; 54: 14103
- 20k Xie Y. Xu D. Sun W.-W. Zhang S.-J. Dong X.-P. Liu B. Zhou Y. Wu B. Asian J. Org. Chem. 2016; 5: 961
- 20l Mei R. Wang H. Warratz S. Macgregor SA. Ackermann L. Chem. Eur. J. 2016; 22: 6759
- 20m Landge VG. Jaiswal G. Balaraman E. Org. Lett. 2016; 18: 812
- 20n Prakash S. Muralirajan K. Cheng C.-H. Angew. Chem. Int. Ed. 2016; 55: 1844
- 20o Liang Y. Jiao N. Angew. Chem. Int. Ed. 2016; 55: 4035
- 20p Gandeepan P. Rajamalli P. Cheng C.-H. Angew. Chem. Int. Ed. 2016; 55: 4308
- 20q Zell D. Bu Q. Feldt M. Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 7408
- 20r Gensch T. Klauck FJ. R. Glorius F. Angew. Chem. Int. Ed. 2016; 55: 11287
- 20s Sen M. Emayavaramban B. Barsu N. Premkumar JR. Sundararaju B. ACS Catal. 2016; 6: 2792
- 20t Kuppusamy R. Muralirajan K. Cheng C.-H. ACS Catal. 2016; 6: 3909
- 20u Maity S. Kancherla R. Dhawa U. Hoque E. Pimparkar S. Maiti D. ACS Catal. 2016; 6: 5493
- 20v Muralirajan K. Kuppusamy R. Prakash S. Cheng C.-H. Adv. Synth. Catal. 2016; 358: 774
- 20w Zhang Z.-Z. Liu B. Xu J.-W. Yan S.-Y. Shi B.-F. Org. Lett. 2016; 18: 1776
- 21a Zhang L.-B. Hao X.-Q. Zhang S.-K. Liu Z.-J. Zheng X.-X. Gong J.-F. Niu J.-L. Song M.-P. Angew. Chem. Int. Ed. 2015; 54: 272
- 21b Zhang L.-B. Hao X.-Q. Liu Z.-J. Zheng X.-X. Zhang S.-K. Niu J.-L. Song M.-P. Angew. Chem. Int. Ed. 2015; 54: 10012
- 21c Zhang LB. Zhang S.-K. Wei D. Zhu X. Hao X.-Q. Su J.-H. Niu J.-L. Song M.-P. Org. Lett. 2016; 18: 1318
- 21d Hao X.-Q. Du C. Zhu X. Li P.-X. Zhang J.-H. Niu J.-L. Song M.-P. Org. Lett. 2016; 18: 3610
- 21e Du C. Li P.-X. Zhu X. Suo J.-F. Niu J.-L. Song M.-P. Angew. Chem. Int. Ed. 2016; 55: 13571
- 22 Aihara Y. Tobisu M. Fukumoto Y. Chatani N. J. Am. Chem. Soc. 2014; 136: 15509
- 23a Tran LD. Popov I. Daugulis O. J. Am. Chem. Soc. 2012; 134: 18237
- 23b Tran LD. Roane J. Daugulis O. Angew. Chem. Int. Ed. 2013; 52: 6043
- 23c Grigorjeva L. Daugulis O. Angew. Chem. Int. Ed. 2014; 53: 10209
- 24 CCDC 1540067 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
For selected reviews of C–H functionalizations, see:
For recent reports on Co-catalyzed C–H bond functionalization, see: