Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(12): 2663-2676
DOI: 10.1055/s-0036-1588170
DOI: 10.1055/s-0036-1588170
paper
Phosphite-Mediated Reductive Cross-Coupling of Isatins and Nitrostyrenes
Supported by: National Institute of General Medical Sciences (R35 GM118055)Further Information
Publication History
Received: 20 February 2017
Accepted after revision: 14 March 2017
Publication Date:
02 May 2017 (online)
Abstract
A new reductive coupling reaction between N-alkylisatins, dimethyl phosphite, and nitrostyrenes has been developed. The reaction relies on Pudovik addition, subsequent phosphonate–phosphate rearrangement, and Michael-type addition of a transient carbanion on the indolinone with β-nitrostyrenes. This protocol introduces a convenient and versatile method for the construction of polyfunctionalized tertiary phosphates under mild conditions. Chiral general bases catalyze the title reaction with promising levels of enantioselectivity.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588170.
- Supporting Information
- CIF File
-
References
- 1a Boeckman RK. Jr. Hudack RA. Jr. J. Org. Chem. 1998; 63: 3524
- 1b Jung M. Groth U. Synlett 2002; 2015
- 1c Groth U. Jung M. Vogel T. Chem. Eur. J. 2005; 11: 3127
- 1d Fischer S. Groth U. Jung M. Lindenmaier M. Vogel T. Tetrahedron Lett. 2005; 46: 6679
- 1e Miyoshi N. Fukuma T. Wada M. Chem. Lett. 1995; 999
- 2a Pudovik AN. Dokl. Akad. Nauk SSSR 1950; 73: 499 ; Chem. Abstr. 1951, 45, 2856
- 2b Galkin VI. Khabibullina AB. Bakhtiyarova IV. Cherkasov RA. Pudovik AN. Zh. Obshch. Khim. 1990; 60: 92
- 2c Sobanov AA. Zolotukhin AV. Galkina IV. Galkin VI. Cherkasov RA. Russ. J. Gen. Chem. 2006; 76: 421
- 2d Sobanov AA. Zolotukhin AV. Galkin VI. Mostovaya OA. Cherkasov RA. Pudovik AN. Russ. J. Gen. Chem. 2003; 73: 871
- 2e Sobanov AA. Zolotukhin AV. Galkin VI. Cherkasov RA. Pudovik AN. Russ. J. Gen. Chem. 2002; 72: 1067
- 2f Albouy D. Lasperas M. Etemad-Moghadam G. Koenig M. Tetrahedron Lett. 1999; 40: 2311
- 2g Qian CT. Huang TS. Fenzi Cuihua 1997; 11: 455
- 2h Yokomatsu T. Yamagishi T. Shibuya S. J. Chem. Soc., Perkin Trans. 1 1997; 1527
- 2i Groeger H. Wilken J. Martens J. Z. Naturforsch., B: Chem. Sci. 1996; 51: 1305
- 2j Ovchinnikov VV. Zh. Obshch. Khim. 1996; 66: 463
- 2k Groeger H. Martens J. Synth. Commun. 1996; 26: 1903
- 2l Safina YuG. Malkova GSh. Cherkasov RA. Zh. Obshch. Khim. 1991; 61: 620
- 2m Galkin VI. Galkina IV. Khabibullina AB. Al Kurdi H. Cherkasov RA. Pudovik AN. Dokl. Akad. Nauk SSSR 1990; 314: 1408
- 2n Nesterov LV. Krepysheva NE. Aleksandrova NA. Zh. Obshch. Khim. 1984; 54: 54
- 2o Malenko DM. Gololobov YuG. Zh. Obshch. Khim. 1978; 48: 2793
- 2p Abramov VS. Dokl. Akad. Nauk SSSR 1950; 73: 487 ; Chem. Abstr. 1951, 45, 2855
- 2q Chen SJ. Coward JK. J. Org. Chem. 1998; 63: 502
- 2r Gawron O. Grelecki C. Reilly W. Sands J. J. Am. Chem. Soc. 1953; 75: 3591
- 2s Tongcharoensirikul P. Suarez AI. Voelker T. Thompson CM. J. Org. Chem. 2004; 69: 2322
- 3a Kondoha A. Terada M. Org. Chem. Front. 2015; 2: 801
- 3b Fitch SJ. Moedritzer K. J. Am. Chem. Soc. 1962; 84: 1876
- 3c Hall LA. R. Stephens CW. Drysdale JJ. J. Am. Chem. Soc. 1957; 79: 1768
- 3d Kuroboshi M. Ishihara T. Ando T. J. Fluorine Chem. 1988; 39: 293
- 3e Demir AS. Reis Ö. İğdir A. Ç. Esiringü İ. Eymur S. J. Org. Chem. 2005; 70: 10584
- 3f Demir AS. Reis B. Reis Ö. Eymür S. Göllü M. Tural S. Saglam G. J. Org. Chem. 2007; 72: 7439
- 3g Demir AS. Esiringü l. Göllü M. Reis Ö. J. Org. Chem. 2009; 74: 2197
- 3h Kondoh A. Terada M. Org. Lett. 2013; 15: 4568
- 3i Pallikonda G. Santosh R. Ghosal S. Chakravarty M. Tetrahedron Lett. 2015; 56: 3796
- 3j Kondoh A. Ishikawa S. Aoki T. Terada M. Chem. Commun. 2016; 52: 12513
- 3k Kondoh A. Takei A. Terada M. Synlett 2016; 27: 1848
- 3l Kondoh A. Aoki T. Terada M. Org. Lett. 2014; 16: 3528
- 4a Horwitz MA. Zavesky BP. Martinez-Alvarado JI. Johnson JS. Org. Lett. 2016; 18: 36
- 4b Horwitz MA. Tanaka N. Yokosaka T. Uraguchi D. Johnson JS. Ooi T. Chem. Sci. 2015; 6: 6086
- 4c Corbett M. Uraguchi D. Ooi T. Johnson JS. Angew. Chem. Int. Ed. 2012; 51: 4685
- 4d Bausch CC. Johnson JS. Adv. Synth. Catal. 2005; 347: 1207
- 5a Kondoh A. Terada M. Org. Biomol. Chem. 2016; 14: 4704
- 5b Jiang J. Liu H. Lu C.-D. Xu Y.-J. Org. Lett. 2016; 18: 880
- 6 Yin D. Liu H. Lu C.-D. Xu Y.-J. J. Org. Chem. 2017; 82: 3252
- 7a Stivala CE. Zakarian A. J. Am. Chem. Soc. 2011; 133: 11936
- 7b Frizzle MJ. Caille S. Marshall TL. McRae K. Nadeau K. Guo G. Wu S. Martinelli MJ. Moniz GA. Org. Process Res. Dev. 2007; 11: 215
- 8 CCDC 1530988 (4aa) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures
- 9a Vakulya B. Varga S. Csampai A. Soos T. Org. Lett. 2005; 7: 1967
- 9b Rong Z.-Q. Pan H.-J. Yan H.-L. Zhao Y. Org. Lett. 2014; 16: 208
- 9c Yang W. Du D.-M. Org. Lett. 2010; 12: 5450
- 9d Manna MS. Kumar V. Mukherjee S. Chem. Commun. 2012; 48: 5193
- 9e Núñez MG. Farley AJ. M. Dixon DJ. J. Am. Chem. Soc. 2013; 135: 16348
- 10a Overman LE. Peterson EA. Tetrahedron 2003; 59: 6905
- 10b Vyas DJ. Froehlich R. Oestreich M. J. Org. Chem. 2010; 75: 6720
- 10c Bouhfid R. Joly N. Essassi EM. Lequart V. Massoui M. Martin P. Synth. Commun. 2011; 41: 2096
- 11a Hashmi AS. K. Häffner T. Yang W. Pankajakshan S. Schäfer S. Schultes L. Rominger F. Frey W. Chem. Eur. J. 2012; 18: 10480
- 11b Ashokkumar V. Siva A. Org. Biomol. Chem. 2015; 13: 10216
- 11c Xu C. Du J. Ma L. Li G. Tao M. Zhang W. Tetrahedron 2013; 69: 4749
- 11d Quan X.-J. Ren Z.-H. Wang Y.-Y. Guan Z.-H. Org. Lett. 2015; 17: 393
- 11e Kolarovic A. Käslin A. Wennemers H. Org. Lett. 2014; 16: 4236
- 11f Park J.-e. Song C. Choi K. Sim T. Moon B. Roh EJ. Bioorg. Med. Chem. Lett. 2013; 23: 5515
- 11g McNulty J. Steere JA. Wolf S. Tetrahedron Lett. 1998; 39: 8013
- 11h Chen J. Geng Z.-C. Li N. Huang X.-F. Pan F.-F. Wang X.-W. J. Org. Chem. 2013; 78: 2362