Synthesis 2016; 48(24): 4548-4554
DOI: 10.1055/s-0036-1588297
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient Synthesis of Functionalized 2-Oxoindole Derivatives by Organocatalytic Z/E-Selective Benzylic Functionalization of (o-Aminobenzyl)indoles with Isatins

Jing Liang
a   School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn
,
Hong-Hao Zhang
a   School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn
,
Cong-Shuai Wang
a   School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn
,
Qiong Wu*
b   School of Chemistry and Chemical Engineering, Xuzhou Institute of Technology, Xuzhou 221111, P. R. of China   Email: hgwuqiong@126.com
,
Feng Shi*
a   School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 30 June 2016

Accepted after revision: 29 July 2016

Publication Date:
07 September 2016 (online)


Abstract

An efficient method has been established for the synthesis of functionalized 2-oxoindole derivatives through chemospecific benzylic functionalization of (o-aminobenzyl)indoles with isatins. This protocol not only provides ready access to functionalized 2-oxoindole derivatives in high yields (≤97%) and excellent Z/E-selectivities (Z/E > 95:5), but also serves as a good example of catalytic benzylic functionalization of (o-aminobenzyl)indoles.

Supporting Information

 
  • References

  • 1 These authors contributed equally to the work.
    • 2a Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
    • 2b Galliford CV, Schneidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 2c Trost BM, Brennan MK. Synthesis 2009; 3003
  • 3 Zhang W, Go M.-L. Bioorg. Med. Chem. 2009; 17: 2077
    • 4a Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL, Peters J.-M. J. Cell Biol. 2003; 161: 281
    • 4b Cantagrel G, de Carné-Carnavalet B, Meyer BC, Cossy J. Org. Lett. 2009; 11: 4262
  • 5 Andreani A, Bellini S, Burnelli S, Granaiola M, Leoni A, Locatelli A, Morigi R, Rambaldi M, Varoli L, Calonghi N, Cappadone C, Zini M, Stefanelli C, Masotti L, Shoemaker RH. J. Med. Chem. 2010; 53: 5567
  • 6 Sarva S, Harinath JS, Sthanikam SP, Ethiraj S, Vaithiyalingam M, Cirandur SR. Chin. Chem. Lett. 2016; 27: 16
    • 7a Thongwichian R, Kosten J, Benary U, Rose HM, Stuiver M, Theillet F.-X, Dose A, Koch B, Yokoyama H, Schwarzer D, Wolf D, Selenko P. J. Am. Chem. Soc. 2015; 137: 6468
    • 7b Moraes EC, Meirelles GV, Honorato RV, de Arruda Campos Brasil de Souza T, de Souza EE, Murakami MT, Lopes de Oliveira PS, Kobarg J. Molecules 2015; 20: 1176
    • 7c Zhao H, Caflisch A. Bioorg. Med. Chem. Lett. 2013; 23: 5721
  • 8 Myrianthopoulos V, Magiatis P, Ferandin Y, Skaltsounis A.-L, Meijer L, Mikros E. J. Med. Chem. 2007; 50: 4027
  • 9 Bouérat L, Fensholdt J, Liang X, Havez S, Nielsen SF, Hansen JR, Bolvig S, Andersson C. J. Med. Chem. 2005; 48: 5412

    • For selected examples, see:
    • 10a Wang X, Wu Q, Jiang B, Fan W, Tu S.-J. Tetrahedron Lett. 2014; 55: 215
    • 10b Wu Q, Feng H, Guo D.-D, Yi M.-S, Wang X.-H, Jiang B, Tu S.-J. J. Heterocycl. Chem. 2013; 50: 599
    • 10c Khan IA, Balaramnavar VM, Saxena AK. Tetrahedron 2012; 68: 10122
    • 10d Liu H, Wu H, Luo Z, Shen J, Kang G, Liu B, Wan Z, Jiang J. Chem. Eur. J. 2012; 18: 11899
    • 10e Chakrabarty M, Mukherjee R, Arima S, Harigaya Y. Heterocycles 2009; 78: 139
    • 11a Sharma SK, Sharma S, Agarwal PK, Kundu B. Eur. J. Org. Chem. 2009; 1309
    • 11b Li X, Chen D, Gu H, Lin X. Chem. Commun. 2014; 50: 7538
  • 12 Shi F, Zhu R.-Y, Dai W, Wang C.-S, Tu S.-J. Chem. Eur. J. 2014; 20: 2597
    • 13a Shi F, Luo S.-W, Tao Z.-L, He L, Yu J, Tu S.-J, Gong L.-Z. Org. Lett. 2011; 13: 4680
    • 13b Shi F, Tao Z.-L, Luo S.-W, Tu S.-J, Gong L.-Z. Chem. Eur. J. 2012; 18: 6885
    • 13c Shi F, Xing G.-J, Tao Z.-L, Luo S.-W, Tu S.-J, Gong L.-Z. J. Org. Chem. 2012; 77: 6970
    • 13d Shi F, Xing G.-J, Zhu R.-Y, Tan W, Tu S.-J. Org. Lett. 2013; 15: 128
    • 13e Zhang Y.-C, Zhao J.-J, Jiang F, Sun S.-B, Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
    • 13f Tan W, Li X, Gong Y.-X, Ge M.-D, Shi F. Chem. Commun. 2014; 50: 15901
    • 13g Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
    • 13h Dai W, Jiang X.-L, Wu Q, Shi F, Tu S.-J. J. Org. Chem. 2015; 80: 5737
    • 13i Gong YX, Wu Q, Zhang H.-H, Zhu Q.-N, Shi F. Org. Biomol. Chem. 2015; 13: 7993
  • 14 CCDC 1488229 contains the supplementary crystallographic data for compound 4a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.