Subscribe to RSS
DOI: 10.1055/s-0036-1588340
Structure-Dependent Nickel-Catalysed Transposition of N-Allylamides to E- or Z-Enamides
Publication History
Received: 10 October 2016
Accepted: 13 October 2016
Publication Date:
14 November 2016 (online)
Dedicated to Prof. Dieter Enders on the occasion of his 70th birthday
Abstract
The nickel-catalysed transposition of a carbon–carbon double bond of N-allyl and N-homoallyl amides is described. While the transposition of acyclic amides gave very high Z-selectivity of the enamides, corresponding cyclic N-allyl amides led exclusively to the E-configured products. Thereby, we realised a stereodivergent approach to enamides that is dependent on the structure of the amide substituents. When homoallylic substrates are used, a temperature-controlled single transposition to a Z-allylic amide derivative at low temperature or a double transposition to an E-enamide at elevated temperature could be achieved.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588340.
- Supporting Information
-
References
- 1a Matsubara R, Kobayashi S. Acc. Chem. Res. 2008; 41: 292
- 1b Carbery DR. Org. Biomol. Chem. 2008; 6: 3455
- 1c Gelis C, Bekkaye M, Lebée C, Blanchard F, Masson G. Org. Lett. 2016; 18: 3422
- 1d Gopalaiah K, Kagan HB. Chem. Rev. 2011; 111: 4599
- 1e Wu J, Zhao C, Wang J. J. Am. Chem. Soc. 2016; 138: 4706
- 1f Xie J.-H, Zhu S.-F, Zhou Q.-L. Chem. Rev. 2011; 111: 1713
- 1g Courant T, Dagousset G, Masson G. Synthesis 2015; 47: 1799
- 1h Brummond KM, Yan B. Synlett 2008; 2303
- 1i Gooßen LJ, Salih KS. M, Blanchot M. Angew. Chem. Int. Ed. 2008; 47: 8492
- 1j Abrams ML, Foarta F, Landis CR. J. Am. Chem. Soc. 2014; 136: 14583
- 1k Bai X.-Y, Wang Z.-X, Li B.-J. Angew. Chem. Int. Ed. 2016; 55: 9007
- 2 Krompiec S, Krompiec M, Penczek R, Ignasiak H. Coord. Chem. Rev. 2008; 252: 1819
- 3a Krompiec S, Pigulla M, Kuźnik N, Krompiec M, Marciniec B, Chadyniak D, Kasperczyk J. J. Mol. Catal. A: Chem. 2005; 225: 91
- 3b Stille JK, Becker Y. J. Org. Chem. 1980; 45: 2139
- 3c Alcaide B, Almendros P, Alonso JM. Chem. Eur. J. 2006; 12: 2874
- 3d Krompiec S, Kuźnik N, Krompiec M, Penczek R, Mrzigod J, Tórz A. J. Mol. Catal. A: Chem. 2006; 253: 132
- 3e Kobayashi T, Arisawa M, Shuto S. Org. Biomol. Chem. 2011; 9: 1219
- 3f Schmidt B, Hauke S, Mühlenberg N. Synthesis 2014; 46: 1648
- 4a Sergeyev S, Hesse M. Synlett 2002; 1313
- 4b Sergeyev S, Hesse M. Helv. Chim. Acta 2003; 86: 750
- 5 Neugnot B, Cintrat J.-C, Rousseau B. Tetrahedron 2004; 60: 3575
- 6a Halli J, Kramer P, Bechthold M, Manolikakes G. Adv. Synth. Catal. 2015; 357: 3321
- 6b Wang L, Liu C, Bai R, Pan Y, Lei A. Chem. Commun. 2013; 49: 7923
- 7 Krompiec S, Pigulla M, Krompiec M, Baj S, Mrowiec-Białoń J, Kasperczyk J. Tetrahedron Lett. 2004; 45: 5257
- 8a Schmidt A, Nödling AR, Hilt G. Angew. Chem. Int. Ed. 2015; 54: 801
- 8b Weber F, Schmidt A, Röse P, Fischer M, Burghaus O, Hilt G. Org. Lett. 2015; 17: 2952
- 8c Weber F, Ballmann M, Kohlmeyer C, Hilt G. Org. Lett. 2016; 18: 548
- 8d Miura T, Nishida Y, Morimoto M, Murakami M. J. Am. Chem. Soc. 2013; 135: 11497
- 9 For mechanistic proposal, see ref. 8a.
- 10 dppp: 1,3-bis(diphenylphosphino)propane.
- 11 Lin S, Yang Z.-Q, Kwok BH. B, Koldobskiy M, Crews CM, Danishefsky SJ. J. Am. Chem. Soc. 2004; 126: 6347
- 12 Formentín P, Nélida G, Steinke JH, Vilar R. J. Org. Chem. 2005; 70: 8235
- 13 Marsh BJ, Heath EL, Carbery DR. Chem. Commun. 2011; 47: 280
For ruthenium and rhodium-catalysed transpositions of N-allyl amides and selected follow-up reactions, see:
For selected iron-catalysed transpositions of N-allyl amides, see:
For selected nickel-catalysed transpositions of N-allyl amides, see: