Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(06): 1327-1334
DOI: 10.1055/s-0036-1588344
DOI: 10.1055/s-0036-1588344
paper
Synthesis and Suzuki Cross-Coupling Reactions of 2,6-Bis(trifluoromethyl)pyridine-4-boronic Acid Pinacol Ester
Further Information
Publication History
Received: 11 October 2016
Accepted after revision: 17 October 2016
Publication Date:
18 November 2016 (online)
Abstract
Iridium-catalyzed aromatic borylation provides quick one-step access to 2,6-bis(trifluoromethyl)pyridine-4-boronic acid pinacol ester. Suzuki couplings of this highly electron-deficient pyridine-4-boronic ester with various (hetero)aryl bromides was successfully carried out and the coupled products were obtained in 46–95% isolated yields. Double and triple Suzuki couplings, with dibromo- and tribromoarenes, respectively, were also achieved. Thus demonstrating that this pyridine-4-boronic ester can be a useful source for the installation of one of the strongest electron-withdrawing aromatic group in organic compounds.
Key words
iridium catalysis - C–H activation - borylation - boronic esters - Suzuki coupling - 2,6-bis(trifluoromethyl)pyridine - organic electronic materialsSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588344.
- Supporting Information
-
References
- 1a Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem. Rev. 2012; 112: 2208
- 1b Zhao Y, Guo Y, Liu Y. Adv. Mater. (Weinheim, Ger.) 2013; 25: 5372
- 1c Bures F. RSC Adv. 2014; 4: 58826
- 2a Dimitrijević E, Taylor MS. ACS Catal. 2013; 3: 945
- 2b Lundberg H, Tinnis F, Selander N, Adolfsson H. Chem. Soc. Rev. 2014; 43: 2714
- 2c Ishihara K, Kondo S, Yamamoto H. J. Org. Chem. 2000; 65: 9125
- 3a Reddy VP, Sinn E, Hosmane N. J. Organomet. Chem. 2015; 798: 5
- 3b Van Rossom W, Terentyeva TG, Sodeyama K, Matsushita Y, Tateyama Y, Ariga K, Hill JP. Org. Biomol. Chem. 2014; 12: 5492
- 3c Nam H, Kwon JE, Choi M.-W, Seo J, Shin S, Kim S, Park SY. ACS Sens. 2016; 1: 392
- 4a Brookhart M, Grant B, Volpe AF. Organometallics 1992; 11: 3920
- 4b Yakelis NA, Bergman RG. Organometallics 2005; 24: 3579
- 5 Herrington TJ, Thom AJ. W, White AJ. P, Ashley AE. Dalton Trans. 2012; 41: 9019
- 6 Taft RW. J. Am. Chem. Soc. 1953; 75: 4231
- 7 Korenaga T, Kadowaki K, Ema T, Sakai T. J. Org. Chem. 2004; 69: 7340
- 8 Korenaga T, Ko A, Uotani K, Tanaka Y, Sakai T. Angew. Chem. Int. Ed. 2011; 50: 10703
- 9a Korenaga T, Sasaki R, Shimada K. Dalton Trans. 2015; 44: 19642
- 9b Korenaga T, Suzuki N, Sueda M, Shimada K. J. Organomet. Chem. 2015; 780: 63
- 10 Sergei PG, Marina VF. Russ. Chem. Rev. 2008; 77: 1055
- 11a Machado VG, Stock RI, Reichardt C. Chem. Rev. 2014; 114: 10429
- 11b Diemer V, Chaumeil H, Defoin A, Fort A, Boeglin A, Carré C. Eur. J. Org. Chem. 2008; 1767
- 11c Diemer V, Chaumeil H, Defoin A, Fort A, Boeglin A, Carré C. Eur. J. Org. Chem. 2006; 2727
- 11d Letrun R, Koch M, Dekhtyar ML, Kurdyukov VV, Tolmachev AI, Rettig W, Vauthey E. J. Phys. Chem. A 2013; 117: 13112
- 12a He GS, Tan L.-S, Zheng Q, Prasad PN. Chem. Rev. 2008; 108: 1245
- 12b Abbotto A, Beverina L, Bozio R, Bradamante S, Ferrante C, Pagani GA, Signorini R. Adv. Mater. (Weinheim, Ger.) 2000; 12: 1963
- 13a Clapham KM, Batsanov AS, Bryce MR, Tarbit B. Org. Biomol. Chem. 2009; 7: 2155
- 13b Wilson JN, Ladefoged LK, Babinchak WM, Schiøtt B. ACS Chem. Neurosci. 2014; 5: 296
- 14a Larsen MA, Wilson CV, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 8633
- 14b Kuninobu Y, Ida H, Nishi M, Kanai M. Nat. Chem. 2015; 7: 712
- 15 Kobayashi Y, Kumadaki I. Chem. Pharm. Bull. 1969; 17: 510
- 16 Porwisiak J, Dmowski W. Tetrahedron 1994; 50: 12259
- 17 Xu Q.-L, Liang X, Zhang S, Jing Y.-M, Liu X, Lu G.-Z, Zheng Y.-X, Zuo J.-L. J. Mater. Chem. C 2015; 3: 3694
- 18a Cho J.-Y, Tse MK, Holmes D, Maleczka RE. Jr, Smith III MR. Science (Washington, D. C.) 2002; 295: 305
- 18b Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
- 18c Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
- 19a Cho J.-Y, Iverson CN, Smith III MR. J. Am. Chem. Soc. 2000; 122: 12868
- 19b Boller TM, Murphy JM, Hapke M, Ishiyama T, Miyaura N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 14263
- 20 For Ir-catalyzed borylation of 2-CF3 substituted pyridine, see: Sadler SA, Tajuddin H, Mkhalid IA. I, Batsanov AS, Albesa-Jove D, Cheung MS, Maxwell AC, Shukla L, Roberts B, Blakemore DC, Lin Z, Marder TB, Steel PG. Org. Biomol. Chem. 2014; 12: 7318
- 21 Batool F, Parveen S, Emwas A.-H, Sioud S, Gao X, Munawar MA, Chotana GA. Org. Lett. 2015; 17: 4256
- 22 Lahm GP, Cordova D, Barry JD, Pahutski TF, Smith BK, Long JK, Benner EA, Holyoke CW, Joraski K, Xu M, Schroeder ME, Wagerle T, Mahaffey MJ, Smith RM, Tong M.-H. Bioorg. Med. Chem. Lett. 2013; 23: 3001
- 23 Billingsley KL, Anderson KW, Buchwald SL. Angew. Chem. Int. Ed. 2006; 45: 3484
- 24 Bulgarevich DS, Kajimoto O, Hara K. J. Phys. Chem. 1994; 98: 2278
- 25a Vivas MG, Silva DL, Rodriguez RD. F, Canuto S, Malinge J, Ishow E, Mendonca CR, De Boni L. J. Phys. Chem. C 2015; 119: 12589
- 25b Melanova K, Cvejn D, Bures F, Zima V, Svoboda J, Benes L, Mikysek T, Pytela O, Knotek P. Dalton Trans. 2014; 43: 10462
- 26 Hu B, Chen X, Wang Y, Lu P, Wang Y. Chem. Asian J. 2013; 8: 1144
For recent examples of the use of 3,5-bis(trifluoromethyl)aryl group see