Synthesis 2017; 49(05): 933-959
DOI: 10.1055/s-0036-1588352
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Arylation and Alkenylation of NO Bonds

Yan-Xiao Jiao
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, P. R. of China   Email: gfysglgx@163.com   Email: moeastlight@mailbox.gxnu.edu.cn
,
Xiao-Pan Ma
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, P. R. of China   Email: gfysglgx@163.com   Email: moeastlight@mailbox.gxnu.edu.cn
,
Gui-Fa Su*
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, P. R. of China   Email: gfysglgx@163.com   Email: moeastlight@mailbox.gxnu.edu.cn
,
Dong-Liang Mo*
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, P. R. of China   Email: gfysglgx@163.com   Email: moeastlight@mailbox.gxnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 16 August 2016

Accepted after revision: 23 August 2016

Publication Date:
30 December 2016 (online)


Abstract

This review covers recent advances in arylation and alkenylation of compounds with NO bonds. Transition-metal-catalyzed/mediated reactions and metal-free strategies are discussed. Some new transformations to access various heterocyclic derivatives of compounds with NO bonds are also included.

1 Introduction

2 O-Arylation of NO Bonds

2.1 Transition-Metal-Catalyzed O-Arylation of NO Bonds

2.2 Metal-Free O-Arylation of NO Bonds

3 O-Alkenylation of NO Bonds

3.1 Transition-Metal-Catalyzed O-Alkenylation of NO Bonds

3.2 Metal-Free O-Alkenylation of NO Bonds

4 N-Arylation of NO Bonds

4.1 Transition-Metal-Catalyzed N-Arylation of NO Bonds

4.2 Metal-Free N-Arylation of NO Bonds

5 N-Alkenylation of NO Bonds

5.1 Transition-Metal-Catalyzed N-Alkenylation of NO Bonds

5.2 Metal-Free N-Alkenylation of NO Bonds

6 Conclusion

 
  • References


    • For some reviews see:
    • 1a Rück-Braun KT, Freysoldt HE, Wierschem F. Chem. Soc. Rev. 2005; 34: 507
    • 1b Pellissier H. Tetrahedron 2007; 63: 3235
    • 1c Nair V, Suja TD. Tetrahedron 2007; 63: 12247
    • 1d Nájera C, Sansano JM. Org. Biomol. Chem. 2009; 7: 4567
    • 1e Brandi A, Cardona F, Cicchi S, Cordero FM, Goti A. Chem. Eur. J. 2009; 15: 7808
    • 1f Burrell AJ. M, Coldham I. Curr. Org. Synth. 2010; 7: 312
    • 1g Kissane M, Maguire AR. Chem. Soc. Rev. 2010; 39: 845
    • 1h Yang J. Synlett 2012; 23: 2293
    • 1i Shi WM, Ma XP, Su GF, Mo DL. Org. Chem. Front. 2016; 3: 116
    • 1j Anderson LL. Asian J. Org. Chem. 2016; 5: 9
    • 2a Rossello A, Bertini S, Lapucci A, Macchia M, Martinelli A, Rapposelli S, Herreros EB, Macchia B. J. Med. Chem. 2002; 45: 4903
    • 2b Watson KG, Brown RN, Cameron R, Chalmers DK, Hamilton S, Jin B, Krippner GY, Luttick A, McConnell DB, Reece PA, Ryan JStanislawski P. C, Tucker SP, Wu W.-Y, Barnard DL, Sidwell RW. J. Med. Chem. 2003; 46: 3181
    • 2c Ali A, Altamore TM, Bliese M, Fisara P, Liepa AJ, Meyer AG, Nguyen O, Sargent RM, Sawutz DG, Winkler DA, Winzenberg KN, Ziebell A. Bioorg. Med. Chem. Lett. 2008; 18: 252
    • 2d Tang D, Gai Y, Polemeropoulos A, Chen Z, Wang Z, Or YS. Bioorg. Med. Chem. Lett. 2008; 18: 5078
    • 2e Bhandari K, Srinivas N, Keshava GB. S, Shukla PK. Eur. J. Med. Chem. 2009; 44: 437
    • 3a Huang JX, Jia YM, Liang XM, Zhu WJ, Zhang JJ, Dong YH, Yuan HZ, Qi SH, Wu JP, Chen FG, Wang DQ. J. Agric. Food Chem. 2007; 55: 10857
    • 3b Tu S, Xu LH, Ye L, Wang XY, Sha Y, Xiao ZY. J. Agric. Food Chem. 2008; 56: 5247
    • 3c Sun R, Lv M, Chen L, Li Q, Song H, Bi F, Huang R, Wang Q. J. Agric. Food Chem. 2008; 56: 11376
    • 4a Guru MM, Ali MA, Punniyamurthy T. Org. Lett. 2011; 13: 1194
    • 4b Guru MM, Ali MA, Punniyamurthy T. J. Org. Chem. 2011; 76: 5295
    • 5a Miyata O, Takeda N, Naito T. Org. Lett. 2004; 6: 1761
    • 5b Johnson SM, Petrassi HM, Palaninathan SK, Mohamedmohaideen NN, Purkey HE, Nichols C, Chiang KP, Walkup T, Sacchettini JC, Sharpless KB, Kelly JW. J. Med. Chem. 2005; 48: 1576
    • 5c Takeda N, Miyata O, Naito T. Eur. J. Org. Chem. 2007; 1491
    • 5d Contiero F, Jones KM, Matts EA, Porzelle A, Tomkinson NC. O. Synlett 2009; 3003
    • 5e Liu Y, Qian J, Lou S, Xu Z. J. Org. Chem. 2010; 75: 6300
    • 5f Takeda N, Ueda M, Kagehira S, Komei H, Tohnai N, Miyata M, Naito T, Miyata O. Org. Lett. 2013; 15: 4382
    • 6a Thirunavukkarasu VS, Parthasarathy K, Cheng CH. Angew. Chem. Int. Ed. 2008; 47: 9462
    • 6b Ngwerume S, Lewis W, Camp JE. J. Org. Chem. 2013; 78: 920
    • 6c Dalpozzo R, Bartoli G. Curr. Org. Chem. 2005; 9: 163
    • 6d Dighe SU, Mukhopadhyay S, Kolle S, Kanojiya S, Batra S. Angew. Chem. Int. Ed. 2015; 54: 10926
    • 6e Singhal A, Parumala SK. R, Sharma A, Peddinti RK. Tetrahedron Lett. 2016; 57: 719
  • 7 Yoshimi K, Kozuka M, Sakai J, Lizawa T, Shimizu Y, Kaniko I, Kojima K, Iwata N. Jpn. J. Pharmacol. 2002; 88: 174
    • 8a Tabolin AA, Ioffe SL. Chem. Rev. 2014; 114: 5426
    • 8b Grigor’ev IA In Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis. 2nd ed.; Feuer H. John Wiley and Sons; Hoboken: 2008: 129-434
    • 8c Parthasarathy K, Jeganmohan M, Cheng C.-H. Org. Lett. 2008; 10: 325
    • 8d Ohno H, Aso A, Kadoh Y, Fujii N, Tanaka T. Angew. Chem. Int. Ed. 2007; 46: 6325
    • 8e Guimond N, Gouliaras C, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6908
    • 8f Li B, Xu H, Wang HN, Wang BQ. ACS Catal. 2016; 6: 3856
    • 9a Zhao D, Zhang JJ, Xie ZW. J. Am. Chem. Soc. 2015; 137: 13938
    • 9b Kumar CV. S, Ramana CV. Org. Lett. 2015; 17: 2870
    • 9c Zou MC, Liu JZ, Tang CH, Jiao N. Org. Lett. 2016; 18: 3030
    • 10a Li HB, Johansson Seechurn CC. C, Colacot TJ. ACS Catal. 2012; 2: 1147
    • 10b Zhang J, Lu GS, Xu J, Sun HM, Shen Q. Org. Lett. 2016; 18: 2860
    • 10c Tobisu M, Takahira T, Morioka T, Chatani N. J. Am. Chem. Soc. 2016; 138: 6711
  • 11 Petrassi HM, Sharpless KB, Kelly JW. Org. Lett. 2001; 3: 139
  • 12 De P, Nonappa Pandurangan K, Maitra U, Wailes S. Org. Lett. 2007; 9: 2767
  • 13 Maimone TJ, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 9990
  • 14 Ali A, Meyer AG, Tuck KL. Synlett 2009; 6: 955
  • 15 Wang L, Huang C, Cai C. Catal. Commun. 2010; 11: 532
  • 16 Mulla SA. R, Chavan SS, Inamdar SM, Pathan MY, Shaikh TM. Y. Tetrahedron Lett. 2014; 55: 5327
    • 17a Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
    • 17b Lindstedt E, Ghosh R, Olofsson B. Org. Lett. 2013; 15: 6070
  • 18 Ghosh R, Olofsson B. Org. Lett. 2014; 16: 1830
  • 19 Ghosh R, Stridfeldt E, Olofsson B. Chem. Eur. J. 2014; 20: 8888
  • 20 Castro LC. M, Chatani N. Synthesis 2014; 46: 2312
  • 21 Gao H, Xu QL, Keene C, Kurti L. Chem. Eur. J. 2014; 20: 8883
  • 22 Yang Y, Wu X, Han J, Mao S, Qian X, Wang L. Eur. J. Org. Chem. 2014; 6854
  • 23 Shi WM, Ma XP, Pan CX, Su GF, Mo DL. J. Org. Chem. 2015; 80: 11175
  • 24 Wang HY, Mueller DS, Sachwani RM, Londino HN, Anderson LL. Org. Lett. 2010; 12: 2290
  • 25 Wang HY, Mueller DS, Sachwani RM, Kapadia R, Londino HN, Anderson LL. J. Org. Chem. 2011; 76: 3203
  • 26 Gayon E, Debleds O, Nicouleau M, Lamaty F, van der Lee A, Vrancken E, Campagne J.-M. J. Org. Chem. 2010; 75: 6050
  • 27 Ngwerume S, Camp JE. Chem. Commun. 2011; 47: 1857
  • 28 Sakakura A, Hori M, Fushimi M, Ishihara K. J. Am. Chem. Soc. 2010; 132: 15550
  • 29 Ueda M, Sato A, Ikeda Y, Miyoshi T, Naito T, Miyata O. Org. Lett. 2010; 12: 2594
  • 30 Ueda M, Ikeda Y, Sato A, Ito Y, Kakiuchi M, Shono H, Miyoshi T, Naito T, Miyata O. Tetrahedron 2011; 67: 4612
  • 31 Gao P, Li H.-X, Hao X.-H, Jin D.-P, Chen D.-Q, Yan X.-B, Wu X.-X, Song X.-R, Liu X.-Y, Liang Y.-M. Org. Lett. 2014; 16: 6298
  • 32 Patil AS, Mo DL, Wang HY, Mueller DS, Anderson LL. Angew. Chem. Int. Ed. 2012; 51: 7799
  • 33 Wang HY, Anderson LL. Org. Lett. 2013; 15: 3362
  • 34 Kontokosta D, Mueller DS, Wang HY, Anderson LL. Org. Lett. 2013; 15: 4830
  • 35 Kumar M, Scobie M, Mashuta MS, Hammond GB, Xu B. Org. Lett. 2013; 15: 724
  • 36 Dai X, Miller MW, Stamford AW. Org. Lett. 2010; 12: 2718
  • 37 Wittstein K, García AB, Schürmann M, Kumar K. Synlett 2012; 23: 227
  • 38 Lu C, Dubrovskiy AV, Larock RC. J. Org. Chem. 2012; 77: 2279
  • 39 Huehls CB, Hood TS, Yang J. Angew. Chem. Int. Ed. 2012; 51: 5110
  • 40 Huehls CB, Huang J, Yang J. Tetrahedron 2015; 71: 3593
  • 41 Mo DL, Wink DJ, Anderson LL. Chem. Eur. J. 2014; 20: 13217
  • 42 Garcia-Castro M, Kremer L, Reinkemeier CD, Unkelbach C, Strohmann C, Ziegler S, Ostermann C, Kumar K. Nat. Commun. 2015; 6: 6516
  • 43 Ngwerume S, Camp JE. J. Org. Chem. 2010; 75: 6271
  • 44 Mo DL, Anderson LL. Angew. Chem. Int. Ed. 2013; 52: 6722
  • 45 Nakamura I, Onuma T, Kanazawa R, Nishigai Y, Terada M. Org. Lett. 2014; 16: 4198
  • 46 Ma XP, Shi WM, Mo XL, Li XH, Li LG, Pan CX, Chen B, Su GF, Mo DL. J. Org. Chem. 2015; 80: 10098
  • 47 Mo DL, Wink DA, Anderson LL. Org. Lett. 2012; 14: 5180
  • 48 Kontokosta D, Mueller DS, Mo DL, Pace WH, Simpson RA, Anderson LL. Beilstein J. Org. Chem. 2015; 11: 2097
  • 49 Nakamura I, Zhang D, Terada M. J. Am. Chem. Soc. 2010; 132: 7884
  • 50 Nakamura I, Okamoto M, Sato Y, Terada M. Angew. Chem. Int. Ed. 2012; 51: 10816
  • 51 Nakamura I, Sato Y, Takeda K, Terada M. Chem. Eur. J. 2014; 20: 10214
  • 52 Michael RE, Chando KM, Sammakia T. J. Org. Chem. 2015; 80: 6930
  • 53 Nakamura I, Zhang D, Terada M. Tetrahedron Lett. 2011; 52: 6470