Synthesis 2017; 49(10): 2215-2222
DOI: 10.1055/s-0036-1588404
paper
© Georg Thieme Verlag Stuttgart · New York

Concise Synthesis of 3-(Aminomethyl)pyrrolizidines via an In(OTf)3-Mediated Ring Rearrangement of 2-[2-(1-Pyrrolin-2-yl)-alkyl]aziridines

Jeroen Dolfen
SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium   Email: matthias.dhooghe@UGent.be
,
Matthias D’hooghe*
SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium   Email: matthias.dhooghe@UGent.be
› Author Affiliations
Further Information

Publication History

Received: 29 November 2016

Accepted after revision: 09 January 2017

Publication Date:
31 January 2017 (online)


Abstract

In this study, an efficient ring rearrangement of 2-[2-(1-pyrrolin-2-yl)alkyl]aziridines, prepared from 2-(bromomethyl)aziridines, toward novel trans- and cis-3-aminomethyl-substituted pyrrolizidines was developed. To that end, addition of In(OTf)3 as an appropriate Lewis acid catalyst resulted in the formation of intermediate pyrrolizidinium salts via regioselective aziridine ring opening, which were then trapped by a hydride or cyanide nucleophile. Column chromatographic purification allowed the isolation of the major trans-isomers, exclusively.

Supporting Information

 
  • References

    • 1a Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Chem. Rev. 2016; 116: 9162
    • 1b Irchhaiya R, Kumar A, Yadav A, Gupta N, Kumar S, Gupta N, Kumar S, Yadav V, Prakash A, Gurjar H. World J. Pharm. Pharmaceut. Sci. 2015; 4: 287
    • 1c Kliebenstein DJ. Annu. Rev. Phytopathol. 2012; 50: 155
    • 1d Bartwal A, Mall R, Lohani P, Guru SK, Arora S. J. Plant Growth Regul. 2012; 32: 216
    • 1e Schoonhoven LM, Van Loon JJ. A, Dicke M. Insect-Plant Biology . 2nd ed. Oxford University Press on Demand; Oxford: 2005
    • 2a Cogni R, Trigo JR. Neotrop. Entomol. 2016; 45: 252
    • 2b Trigo JR. Phytochem. Rev. 2010; 10: 83
    • 2c Joosten L, van Veen JA. Phytochem. Rev. 2011; 10: 127
    • 2d Narberhaus I, Zintgraf V, Dobler S. Chemoecology 2005; 15: 121
    • 2e Nuringtyas TR, Verpoorte R, Klinkhamer PG, van Oers MM, Leiss KA. J. Chem. Ecol. 2014; 40: 609
    • 2f Thoden TC, Boppré M, Hallmann J. Nematology 2007; 9: 343
    • 3a Robertson J, Stevens K. Nat. Prod. Rep. 2014; 31: 1721
    • 3b Liddell JR. Nat. Prod. Rep. 2000; 17: 455
    • 3c Kim HY, Stermitz FR, Molyneux RJ, Wilson DW, Taylor D, Coulombe RA. Toxicol. Appl. Pharmacol. 1993; 122: 61
    • 3d Mattocks AR. Nature 1968; 217: 723
    • 3e Wiedenfeld H, Edgar J. Phytochem. Rev. 2010; 10: 137
    • 4a Bhat C, Tilve SG. RSC Adv. 2014; 4: 5405
    • 4b Martinez ST, Belouezzane C, Pinto AC, Glasnov T. Org. Prep. Proced. Int. 2016; 48: 223
    • 4c Pyne SG, Tang M. Curr. Org. Chem. 2005; 9: 1393
    • 4d Ikeda M, Sato T, Ishibashi H. Heterocycles 1988; 27: 1465
    • 4e Broggini G, Zecchi G. Synthesis 1999; 905
  • 5 Salunke RV, Ramesh NG. Eur. J. Org. Chem. 2016; 654
  • 6 Crabb TA, Newton RF, Jackson D. Chem. Rev. 1971; 71: 109
  • 7 Abbaspour Tehrani K, D’hooghe M, De Kimpe N. Tetrahedron 2003; 59: 3099
  • 8 De Kimpe N, De Smaele D, Sakony Z. J. Org. Chem. 1997; 62: 2448
  • 9 Dolfen J, Vervisch K, De Kimpe N, D’hooghe M. Chem. Eur. J. 2016; 22: 4945
  • 10 Gademann K, Kerschgens I. Synthesis 2015; 47: 3153
  • 11 Hirner JJ, Roth KE, Shi Y, Blum SA. Organometallics 2012; 31: 6843
  • 12 De Smaele D, Bogaert P, De Kimpe N. Tetrahedron Lett. 1998; 39: 9797
  • 13 Toma Y, Kunigami M, Watanabe K.-j, Higashi M, Arimitsu S. J. Fluorine Chem. 2016; 189: 22
  • 14 Manjappa KB, Peng Y.-T, Jhang W.-F, Yang D.-Y. Tetrahedron 2016; 72: 853
  • 15 Mancebo-Aracil J, Nájera C, Castelló LM, Sansano JM, Larrañaga O, de Cózar A, Cossío FP. Tetrahedron 2015; 71: 9645
  • 17 Bergner I, Wiebe C, Meyer N, Opatz T. J. Org. Chem. 2009; 74: 8243
  • 18 Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 734