Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(04): 790-801
DOI: 10.1055/s-0036-1588405
DOI: 10.1055/s-0036-1588405
short review
Recent Advances in Catalytic Transformations Involving Copper Acetylides
Further Information
Publication History
Received: 01 December 2016
Accepted after revision: 10 January 2017
Publication Date:
24 January 2017 (online)
Abstract
This review will discuss recent advances in catalytic transformations involving copper acetylides. The content is organized according to the site of functionalization: cross-couplings and direct nucleophilicity (C1-functionalization), formal cycloadditions (C2-functionalization), and propargylic substitutions (C3-functionalization).
1 Introduction
2 Cross-Couplings
3 Direct Nucleophilicity
4 Formal Cycloadditions
5 Propargylic Substitutions
6 Conclusions and Perspectives
-
References
- 1 Haynes WM. CRC Handbook of Chemistry and Physics . 93rd ed. CRC Press; Boca Raton: 2012
- 2 Moen A, Nicholson DG. J. Chem. Soc., Faraday Trans. 1995; 91: 3529
- 3 Dias HV. R, Flores JA, Wu J, Kroll P. J. Am. Chem. Soc. 2009; 131: 11249
- 4 Hathaway BJ In Comprehensive Coordination Chemistry Wilkinson G. Vol. 5. Pergamon; Oxford: 1987: 533-757
- 5 Carin CC, Seechurn J, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 6 Fu GC. Acc. Chem. Res. 2008; 41: 1555
- 7 Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
- 8 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 16: 4467
- 9a Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
- 9b Chinchilla R, Nájera C. Chem. Soc. Rev. 2011; 40: 5084
- 10 Eckhardt M, Fu GC. J. Am. Chem. Soc. 2003; 125: 13642
- 11 Altenhoff G, Goddard R, Lehmann CW, Glorius F. J. Am. Chem. Soc. 2004; 126: 15195
- 12 Altenhoff G, Würtz S, Glorius F. Tetrahedron Lett. 2006; 47: 2925
- 13a Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
- 13b Xia Y, Zhang Y, Wang J. ACS Catal. 2013; 3: 2586
- 14 Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
- 15 Lei Z, Fei Y, Zhang Y, Wang J. J. Am. Chem. Soc. 2010; 132: 13590
- 16 During the preparation of this manuscript, an enantioselective variant of this transformation was reported: Chu W.-D, Zhang L, Zhang Z, Zhou Q, Mo F, Zhang Y, Wang J. J. Am. Chem. Soc. 2016; 138: 14558
- 17 Suárez A, Fu GC. Angew. Chem. Int. Ed. 2004; 43: 3580
- 18 Xiao Q, Xia Y, Li H, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2011; 50: 1114
- 19 Ye F, Ma X, Xiao Q, Li H, Zhang Y, Wang J. J. Am. Chem. Soc. 2012; 134: 5742
- 20a Glaser C. Ber. Dtsch. Chem. Ges. 1869; 2: 422
- 20b Hay AS. J.Org. Chem. 1960; 25: 1275
- 20c Hay AS. J. Org. Chem. 1962; 27: 3320
- 21 Sindhu KS, Anilkumar G. RSC Adv. 2014; 4: 27867
- 22a Yin W, He C, Chen M, Zhang H, Lei A. Org. Lett. 2009; 11: 709
- 22b Suarez JR, Collado-Sanz D, Cardenas DJ, Chiara JL. J. Org. Chem. 2015; 80: 1098
- 23 Su L, Dong J, Liu L, Sun M, Qiu R, Zhou Y, Yin S. J. Am. Chem. Soc. 2016; 138: 12348
- 24 Knopfel TF, Carreira EM. J. Am. Chem. Soc. 2003; 125: 6054
- 25 Yazaki R, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 10275
- 26 For a review concerning chiral anion control, see: Phipps RJ, Hamilton GL, Toste FD. Nat. Chem. 2012; 4: 603
- 27 Yazaki R, Kumagai N, Shibasaki M. Chem. Asian J. 2011; 6: 1778
- 28 Makida Y, Takayama Y, Ohmiya H, Sawamura M. Angew. Chem. Int. Ed. 2013; 52: 5350
- 29 Harada A, Makida Y, Sato T, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2014; 136: 13932
- 30 Chen Q, Tang Y, Huang T, Liu X, Lin L, Feng X. Angew. Chem. Int. Ed. 2016; 55: 5286
- 31 Yu D, Zhang Y. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20184
- 32a Maity P, Srinivas HD, Watson MP. J. Am. Chem. Soc. 2011; 133: 17142
- 32b Srinivas HD, Maity P, Yap GP. A, Watson MP. J. Org. Chem. 2015; 80: 4003
- 33 Dasgupta S, Rivas T, Watson MP. Angew. Chem. Int. Ed. 2015; 54: 14154
- 34 Huisgen R. Proc. Chem. Soc. 1961; 357
- 35 Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
- 36 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
- 37a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
- 37b Moses JE, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
- 38a Kolb HC, Sharpless KB. Drug Discovery Today 2003; 8: 1128
- 38b Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
- 38c Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
- 38d Hawker CJ, Wooley KL. Science (Washington, D. C.) 2005; 309: 1200
- 38e Lallana E, Riguera R, Fernandez-Megia E. Angew. Chem. Int. Ed. 2011; 50: 8794
- 39 Bock VD, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2006; 51
- 40 Worrell BT, Malik JA, Fokin VV. Science (Washington, D. C.) 2013; 340: 457
- 41 Jin L, Tolentino DR, Melaimi M, Bertrand G. Sci. Adv. 2015; 1: e1500304
- 42 Zhou F, Tan C, Tang J, Zhang Y.-Y, Gao W.-M, Wu H.-H, Yu Y.-H, Zhou J. J. Am. Chem. Soc. 2013; 135: 10994
- 43a Brittain WD. G, Buckley BR, Fossey JS. Chem. Commun. 2015; 51: 17217
- 43b Brittain WD. G, Buckley BR, Fossey JS. ACS Catal. 2016; 6: 3629
- 44 Meng JC, Fokin VV, Finn MG. Tetrahedron Lett. 2005; 46: 4543
- 45 Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
- 46 Nicasio MC, Pérez PJ, Cano I, Eleuterio Á. J. Am. Chem. Soc. 2011; 133: 191
- 47 Kolodych S, Rasolofonjatovo E, Chaumontet M, Nevers MC, Créminon C, Taran F. Angew. Chem. Int. Ed. 2013; 52: 12056
- 48 Specklin S, Decuypere E, Plougastel L, Aliani S, Taran F. J. Org. Chem. 2014; 79: 7772
- 49 Steko S, Furman B, Chmielewski M. Tetrahedron 2014; 70: 7817
- 50 Lo MM.-C, Fu GC. J. Am. Chem. Soc. 2002; 124: 4572
- 51 Santoro S, Liao RZ, Marcelli T, Hammar P, Himo F. J. Org. Chem. 2015; 80: 2649
- 52 Fürstner A, Stimson CC. Angew. Chem. Int. Ed. 2007; 46: 8845
- 53 Imada Y, Yuasa M, Nakamura I, Murahashi S.-I. J. Org. Chem. 1994; 59: 2282
- 54a Ljungdahl N, Kann N. Angew. Chem. Int. Ed. 2009; 48: 642
- 54b Miyake Y, Uemura S, Nishibayashi Y. ChemCatChem 2009; 1: 342
- 54c Detz RJ, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2009; 6263
- 54d Ding C.-H, Hou X.-L. Chem. Rev. 2011; 111: 1914
- 54e Nishibayashi Y. Synthesis 2012; 44: 489
- 54f Bauer EB. Synthesis 2012; 44: 1131
- 54g Zhang D.-Y, Hu X.-P. Tetrahedron Lett. 2015; 56: 283
- 54h Hu X.-H, Liu Z.-T, Shao L, Hu X.-P. Synthesis 2015; 47: 913
- 55a Zhu F.-L, Zou Y, Zhang D.-Y, Wang Y.-H, Hu X.-H, Chen S, Xu J, Hu X.-P. Angew. Chem. Int. Ed. 2014; 53: 1410
- 55b Zhu F.-L, Wang Y.-H, Zhang D.-Y, Xu J, Hu X.-P. Angew. Chem. Int. Ed. 2014; 53: 10223
- 55c Shao W, Li H, Liu C, Liu C.-J, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 7684
- 55d Shao L, Wang Y.-H, Zhang D.-Y, Xu J, Hu X.-P. Angew. Chem. Int. Ed. 2016; 55: 5014
- 55e Wang Q, Li T.-R, Lu L.-Q, Li M.-M, Zhang K, Xiao W.-J. J. Am. Chem. Soc. 2016; 138: 8360
- 55f Liu Z.-T, Wang Y.-H, Zhu F.-L, Hu X.-P. Org. Lett. 2016; 18: 1190
- 55g Tsuchida K, Senda Y, Nakajima K, Nishibayashi Y. Angew. Chem. Int. Ed. 2016; 55: 9728
- 55h Li T.-R, Cheng B.-Y, Wang Y.-N, Zhang M.-M, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2016; 55: 12422
- 55i For a mechanistically distinct copper-catalyzed propargylic substitution, see: Sugiishi T, Kimura A, Nakamura H. J. Am. Chem. Soc. 2010; 132: 5332
- 56 Detz RJ, Delville MM. E, Hiemstra H, van Maarseveen JH. Angew. Chem. Int. Ed. 2008; 47: 3777
- 57 For a review concerning π–π interactions, see: Meyer EA, Castellano RK, Diedrich F. Angew. Chem. Int. Ed. 2003; 42: 1210
- 58 Hattori G, Matsuzawa H, Miyake Y, Nishibayashi Y. Angew. Chem. Int. Ed. 2008; 47: 3781
- 59 Hattori G, Sakata K, Matsuzawa H, Tanabe Y, Miyake Y, Nishibayashi Y. J. Am. Chem. Soc. 2010; 132: 10592
- 60 Zhang C, Hu X.-H, Wang Y.-H, Zheng Z, Xu J, Hu X.-P. J. Am. Chem. Soc. 2012; 134: 9585
- 61 Nakajima K, Shibata M, Nishibayashi Y. J. Am. Chem. Soc. 2015; 137: 2472
- 62 Furuya T, Kamlet AS, Ritter T. Nature (London) 2011; 473: 470
- 63 For a recent review, see: Wu J. Tetrahedron Lett. 2014; 55: 4289
- 64 Cheng L.-J, Cordier CJ. Angew. Chem. Int. Ed. 2015; 54: 13734
For reviews, see:
For related reviews, see:
For selected examples, see: