RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2017; 28(14): 1840-1844
DOI: 10.1055/s-0036-1588420
DOI: 10.1055/s-0036-1588420
letter
A Convenient Strategy for Remote C–H Bond Halogenation of 8-Aminoquinolines in the C5 Position
We are grateful to China Postdoctoral Science Foundation (2016M590967), Shaanxi Provincial Science and Technology Development Funds (2016JQ2022, 2016JQ2015), Shaanxi Provincial Postdoctoral Foundation (2016BSHEDZZ21), the National Fund for Fostering Talents of Basic Science (NFFTBS-J1103311, J1210057), and the National Natural Science Foundation of China (21402071) for financial support.Weitere Informationen
Publikationsverlauf
Received: 10. März 2017
Accepted after revision: 18. April 2017
Publikationsdatum:
10. Mai 2017 (online)
◊ These two authors contributed equally to this work.
Abstract
A highly efficient and convenient strategy has been developed for remote C–H bond halogenation of 8-aminoquinolines in good to excellent yields under transition-metal-free conditions. The reaction tolerates a variety of functional groups and can potentially be scaled up.
Key words
transition-metal-free - halogenation - C–H bond functionalization - aminoquinolines - regioselectivity - potassium persulfateSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588420.
- Supporting Information
Primary Data
- Primary Data
Primary data for this article are available online at http://www.thieme-connect.com/ejournals/toc/synthesis and can be cited using the following DOI: 10.4125/pd0094th.
-
References
- 1a Hughes CC. MacMillan JB. Gaudêncio SP. Jensen PR. Fenical W. Angew. Chem. Int. Ed. 2009; 48: 725
- 1b Pan E. Oswald NW. Legako AG. Life JM. Posner BA. MacMillan JB. Chem. Sci. 2013; 4: 482
- 1c Pandey RR. Srivastava A. Malasoni R. Naqvi A. Jain A. Maikhuri JP. Paliwal S. Gupta G. Dwivedi AK. Bioorg. Med. Chem. Lett. 2012; 22: 5735
- 1d Vandekerckhove S. Müller C. Vogt D. Lategan C. Smith PJ. Chibale K. De Kimpe N. D’hooghe M. Bioorg. Med. Chem. Lett. 2013; 23: 318
- 1e Vandekerckhove S. Tran HG. Desmet T. D’hooghe M. Bioorg. Med. Chem. Lett. 2013; 23: 4641
- 2a He J. Takise R. Fu H. Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 4618
- 2b Miyaji R. Asano K. Matsubara S. Org. Biomol. Chem. 2014; 12: 119
- 2c Deng Y. Gong W. He J. Yu J.-Q. Angew. Chem. Int. Ed. 2014; 53: 6692
- 2d Miyaji R. Asano K. Matsubara S. J. Am. Chem. Soc. 2015; 137: 6766
- 3a Eicher T. Hauptmann S. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications. Wiley-VCH; Weinheim: 2003. 2nd ed.
- 3b Michael JP. Nat. Prod. Rep. 2008; 25: 166
- 3c Solomon VR. Lee H. Curr. Med. Chem. 2011; 18: 1488
- 4a Chen Y.-L. Huang C.-J. Huang Z.-Y. Tseng C.-H. Chang F.-S. Yang S.-H. Lin S.-R. Tzeng C.-C. Bioorg. Med. Chem. 2006; 14: 3098
- 4b Ghorab MM. Ragab FA. Hamed MM. Eur. J. Med. Chem. 2009; 44: 4211
- 4c Kaur K. Jain M. Reddy RP. Jain R. Eur. J. Med. Chem. 2010; 45: 3245
- 4d Colomb J. Becker G. Fieux S. Zimmer L. Billard T. J. Med. Chem. 2014; 57: 3884
- 5 For a review on the site selective C–H functionalization of quinolines, see: Iwai T. Sawamura M. ACS Catal. 2015; 5: 5031
- 6a Berman AM. Lewis JC. Bergman RG. Ellman JA. J. Am. Chem. Soc. 2008; 130: 14926
- 6b Tobisu M. Hyodo I. Chatani N. J. Am. Chem. Soc. 2009; 131: 12070
- 6c Seiple IB. Su S. Rodriguez RA. Gianatassio R. Fujiwara Y. Sobel AL. Baran PS. J. Am. Chem. Soc. 2010; 132: 13194
- 6d Ren X. Wen P. Shi X. Wang Y. Li J. Yang S. Yan H. Huang G. Org. Lett. 2013; 15: 5194
- 6e Zhu C. Yi M. Wei D. Chen X. Wu Y. Cui X. Org. Lett. 2014; 16: 1840
- 6f Xia X.-F. Zhu S.-L. Gu Z. Wang H. RSC Adv. 2015; 5: 28892
- 7a Deng G. Li C.-J. Org. Lett. 2009; 11: 1171
- 7b Tsai C.-C. Shih W.-C. Fang C.-H. Li C.-Y. Ong T.-G. Yap GP. A. J. Am. Chem. Soc. 2010; 132: 11887
- 7c Wasa M. Worrell BT. Yu J.-Q. Angew. Chem. Int. Ed. 2010; 49: 1275
- 7d Chen Q. du Jourdin XM. Knochel P. J. Am. Chem. Soc. 2013; 135: 4958
- 7e Yamamoto S. Saga Y. Andou T. Matsunaga S. Kanai M. Adv. Synth. Catal. 2014; 356: 401
- 8a Kwak J. Kim M. Chang S. J. Am. Chem. Soc. 2011; 133: 3780
- 8b Sharma U. Park Y. Chang S. J. Org. Chem. 2014; 79: 9899
- 8c Hwang H. Kim J. Jeong J. Chang S. J. Am. Chem. Soc. 2014; 136: 10770
- 8d Stephens DE. Lakey-Beitia J. Atesin AC. Ateşin TA. Chavez G. Arman HD. Larionov OV. ACS Catal. 2015; 5: 167
- 9a Suess AM. Ertem MZ. Cramer CJ. Stahl SS. J. Am. Chem. Soc. 2013; 135: 9797
- 9b Cong X. Zeng X. Org. Lett. 2014; 16: 3716
- 9c Qiao H. Sun S. Yang F. Zhu Y. Zhu W. Dong Y. Wu Y. Kong X. Jiang L. Wu Y. Org. Lett. 2015; 17: 6086
- 9d Liang H.-W. Jiang K. Ding W. Yuan Y. Shuai L. Chen Y.-C. Wei Y. Chem. Commun. 2015; 51: 16928
- 9e Sahoo H. Reddy MK. Baidya I. Ramakrishna M. Chem. Eur. J. 2016; 22: 1592
- 9f Xu J. Shen C. Zhu X. Zhang P. Ajitha MJ. Huang K.-W. An Z. Liu X. Chem. Asian. J. 2016; 11: 882
- 9g Xu J. Zhu X. Zhou G. Ying B. Ye P. Su L. Shen C. Zhang P. Org. Biomol. Chem. 2016; 14: 3016
- 9h Wu C. Zhou H. Wu Q. He M. Li P. Su Q. Mu Y. Synlett 2016; 27: 868
- 9i Zhu L. Qiu R. Cao X. Xiao S. Xu X. Au C.-T. Yin S.-F. Org. Lett. 2015; 17: 5528
- 9j Chen H. Li P. Wang M. Wang L. Org. Lett. 2016; 18: 4794
- 9k Whiteoak CJ. Planas O. Company A. Ribas X. Adv. Synth. Catal. 2016; 358: 1679
- 9l He Y. Zhao N. Qiu L. Zhang X. Fan X. Org. Lett. 2016; 18: 6054
- 10a Tanabe K. Chen HE. Verma BL. Saggiomo AJ. Nodiff EA. J. Med. Chem. 1978; 21: 133
- 10b Dua VK. Sinha SN. Biswas S. Valecha N. Puri SK. Sharma VP. Bioorg. Med. Chem. Lett. 2002; 12: 3587
- 10c Wienser J. Ortmann R. Jomaa H. Schlitzer M. Angew. Chem. Int. Ed. 2003; 42: 5274
- 10d Tekwani BL. Walker LA. Curr. Opin. Infect. Dis. 2006; 19: 623
- 10e Hughes CC. Fenical WJ. J. Am. Chem. Soc. 2010; 132: 2528
- 10f Koh EJ. El-Gamal MI. Oh C.-H. Lee SH. Sim T. Kim G. Choi HS. Hong JH. Lee S.-g. Yoo KH. Eur. J. Med. Chem. 2013; 70: 10
- 10g Takayama Y. Yamada T. Tatekabe S. Nagasawa K. Chem. Commun. 2013; 49: 6519
- 10h Frisch KC. Bogert MT. J. Org. Chem. 1944; 9: 338
- 11a Ji D. He X. Xu Y. Xu Z. Bian Y. Liu W. Zhu Q. Xu Y. Org. Lett. 2016; 18: 4478
- 11b Wu Z. He Y. Ma C. Zhou X. Liu X. Li Y. Hu T. Wen P. Huang G. Asian J. Org. Chem. 2016; 5: 724
- 11c During the preparation of this manuscript, a similar transition-metal-free oxidative C5 C–H halogenation of 8-aminoquinoline amides has been reported, see: Wang Y. Wang Y. Jiang K. Zhang Q. Li D. Org. Biomol. Chem. 2016; 14: 10180
- 12 N-(5-Chloroquinolin-8-yl)benzamide (2aa); Typical Procedure A mixture of N-(quinolin-8-yl)benzamide (0.2 mmol, 49.6 mg, 1.0 equiv), LiCl (0.3 mmol, 12.7 mg, 1.5 equiv), and K2S2O8 (108 mg, 0.4 mmol, 2 equiv) in MeCN was stirred under argon at 80 °C for 8 h, then cooled to r.t. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography (silica gel, PE–EA = 20:1) to give a white solid that was dried under an oil-pump vacuum; yield: 43.4 mg (82%); mp 133–134 °C. 1H NMR (400 MHz, CDCl3): δ = 10.68 (s, 1 H), 8.89–8.87 (m, 2 H), 8.57 (d, J = 8.0 Hz, 1 H), 8.07 (d, J = 8.0 Hz, 2 H), 7.64 (d, J = 8.0 Hz, 1 H), 7.60–7.53 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 165.36, 148.72, 139.22, 134.79, 133.79, 133.42, 131.98, 128.81, 127.24, 125.94, 124.44, 122.38, 116.39. HRMS (ESI): m/z [M + Na]+ Calcd for C16H11ClN2NaO+: 305.0458; found: 305.0427.
- 13 Li J.-M. Weng J. Lu G. Chan AS. C. Tetrahedron Lett. 2016; 57: 2121
- 14 Son J.-H. Pudenz MA. Hoefelmeyer JD. Dalton Trans. 2010; 39: 11081
- 15 Tran C. Gallavardin T. Petit M. Slimi R. Dhimane H. Blanchard-Desce M. Acher FC. Ogden D. Dalko PI. Org. Lett. 2015; 17: 402
- 16 Lee IY. C. Jung MH. Lim H.-J. Lee HW. Heterocycles 2005; 65: 2505
For selected examples of C–H functionalizations at the C2-position of quinolines, see:
For selected examples of C–H functionalizations at the C4-position of quinolines, see:
For selected examples of C–H functionalizations at the C8-position of quinolines, see: