Synthesis 2017; 49(17): 3887-3894
DOI: 10.1055/s-0036-1588430
special topic
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Cobalt-Catalyzed Csp2 and Csp3 Cross-Couplings

Jeffrey M. Hammann
Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstr. 5-13, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Maximilian S. Hofmayer
Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstr. 5-13, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Ferdinand H. Lutter
Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstr. 5-13, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Lucie Thomas
Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstr. 5-13, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstr. 5-13, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
› Author Affiliations
Further Information

Publication History

Received: 03 February 2017

Accepted after revision: 02 May 2017

Publication Date:
29 May 2017 (online)


Published as part of the Special Topic Cobalt in Organic Synthesis

Abstract

The present short review article highlights recent progress in the field of transition-metal catalysis. An overview on recent work involving cobalt-catalyzed cross-coupling reactions and some recent advances from our laboratories are given.

1 Introduction

2 Csp2–Csp2 Cobalt-Catalyzed Cross-Couplings

3 Csp2–Csp3 Cobalt-Catalyzed Cross-Couplings

4 Conclusion

 
  • References

  • 1 Modern Drug Synthesis . Li JJ. Johnson DS. Wiley-VCH; Weinheim: 2010
    • 2a World market prices: Pd ca. 22700 €/kg, Co ca. 35 €/kg; http://www.infomine.com/; retrieved February 2017.
    • 2b Although CoCl2 as well as NiCl2 are suspected of causing genetic defects and are toxic to aquatic life, the acute toxicity of CoCl2 is lower than that of NiCl2 (LD50 (CoCl2, rat oral) = 418 mg/kg; LD50(NiCl2, rat oral) = 186 mg/kg); see: Egorova KS. Ananikov VP. Angew. Chem. Int. Ed. 2016; 55: 12150
    • 3a Bauer I. Knölker H.-J. Chem. Rev. 2015; 115: 3170
    • 3b Mako TL. Byers JA. Inorg. Chem. Front. 2016; 3: 766
    • 4a Gosmini C. Begouin J.-M. Moncomble A. Chem. Commun. 2008; 3221
    • 4b Cahiez G. Moyeux A. Chem. Rev. 2010; 110: 1435
    • 4c Gosmini C. Moncomble A. Isr. J. Chem. 2010; 50: 568
  • 5 Thaler T. Guo L.-N. Mayer P. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 2174
    • 6a Kuzmina OM. Steib AK. Markiewicz JT. Flubacher D. Knochel P. Angew. Chem. Int. Ed. 2013; 52: 4945
    • 6b Kuzmina OM. Steib AK. Fernandez S. Boudot W. Markiewicz JT. Knochel P. Chem. Eur. J. 2015; 21: 8242
    • 6c Haas D. Hammann JM. Lutter FH. Knochel P. Angew. Chem. Int. Ed. 2016; 55: 3809
  • 7 Hammann JM. Lutter FH. Haas D. Knochel P. Angew. Chem. Int. Ed. 2017; 129: 1102
  • 8 Hatakeyama T. Hashimoto S. Ishizuka K. Nakamura M. J. Am. Chem. Soc. 2009; 131: 11949
  • 9 Begouin J.-M. Gosmini C. J. Org. Chem. 2009; 74: 3221
  • 10 Moncomble A. Le Floch P. Lledos A. Gosmini C. J. Org. Chem. 2012; 77: 5056
  • 11 Guelak S. Stepanek O. Malberg J. Rad BR. Kotora M. Wolf R. von Wangelin AJ. Chem. Sci. 2013; 4: 776
  • 12 Malapit CA. Visco MD. Reeves JT. Busacca CA. Howell AR. Senanayake CH. Adv. Synth. Catal. 2015; 357: 2199
  • 13 Beng TK. Sincavage K. Silaire AW. V. Alwali A. Bassler DP. Spence LE. Beale O. Org. Biomol. Chem. 2015; 13: 5349
  • 14 NMR experiments and crystallographic data showed that the structure of these zinc reagents is RZnX·Mg(OPiv)2·LiCl. However, for clarity, we have named these reagents RZnOPiv, see: Hernán-Gómez A. Herd E. Hevia E. Kennedy AR. Knochel P. Koszinowski K. Manolikakes SM. Mulvey RE. Schnegelsberg C. Angew. Chem. Int. Ed. 2014; 53: 2706
  • 15 Hamaguchi H. Uemura M. Yasui H. Yorimitsu H. Oshima K. Chem. Lett. 2008; 37: 1178
  • 16 Cahiez G. Chaboche C. Duplais C. Moyeux A. Org. Lett. 2009; 11: 277
  • 17 Czaplik WM. Mayer M. von Wangelin AJ. Synlett 2009; 2931
  • 18 Hsu S.-F. Ko C.-W. Wu Y.-T. Adv. Synth. Catal. 2011; 353: 1756
  • 19 Barre B. Gonnard L. Campagne R. Reymond S. Marin J. Ciapetti P. Brellier M. Guerinot A. Cossy J. Org. Lett. 2014; 16: 6160
    • 20a Nicolas L. Angibaud P. Stansfield I. Bonnet P. Meerpoel L. Reymond S. Cossy J. Angew. Chem. Int. Ed. 2012; 51: 11101
    • 20b Nicolas L. Izquierdo E. Angibaud P. Stansfield I. Meerpoel L. Reymond S. Cossy J. J. Org. Chem. 2013; 78: 11807
    • 20c Gonnard L. Guerinot A. Cossy J. Chem. Eur. J. 2015; 21: 12797
  • 21 Araki K. Inoue M. Tetrahedron 2013; 69: 3913
  • 22 Despiau CF. Dominey AP. D. Harrowven C. Linclau B. Eur. J. Org. Chem. 2014; 4335
  • 23 Hammann JM. Steib AK. Knochel P. Org. Lett. 2014; 16: 6500
  • 24 Hammann JM. Haas D. Knochel P. Angew. Chem. Int. Ed. 2015; 54: 4478
  • 25 Mao J. Liu F. Wang M. Wu L. Zheng B. Liu S. Zhong J. Bian Q. Walsh PJ. J. Am. Chem. Soc. 2014; 136: 17662
  • 26 Frlan R. Sova M. Gobec S. Stavber G. Casar Z. J. Org. Chem. 2015; 80: 7803
  • 27 Benischke A. Knoll I. Rérat A. Gosmini C. Knochel P. Chem. Commun. 2016; 317