Subscribe to RSS
DOI: 10.1055/s-0036-1588440
A Rapid and Diastereoselective Synthesis of 2-Deoxy-2-iodo-α-glycosides and its Mechanism for Diastereoselectivity
Publication History
Received: 28 March 2017
Accepted after revision: 04 May 2017
Publication Date:
24 May 2017 (online)
Abstract
Reductive deiodination of 2-deoxy-2-iodo-glycoside is an efficient and practical approach for the synthesis of 2-deoxyglycosides, which are moieties of bioactive compounds. However, inseparable diastereoisomers are usually formed in the preparation of 2-deoxy-2-iodo-glycosides via glycosylation of glycals with alcohols using current methods. To overcome this problem, a rapid and diastereoselective transformation of glycals and alcohols into 2-deoxy-2-iodo-α-glycosides enabled by I2/PhI(OAc)2 has been developed. 14 glycals, derived from 13 monosaccharides and one disaccharide, diastereoselectively yielded α-glycosides. Only in two cases the diastereoselectivity of the glycosylation was poor. The yields of glycosylation range from 73% to 95%, and the reactions are finished in only five minutes. Investigations for better diastereoselectivity by comparing I2/Ph(OAc)2- with I2/Cu(OAc)2-mediated glycosylations using UV analysis have been conducted.
Key words
2-deoxy-2-iodo-glycoside - selective glycosylation - glycal - alcohol - iodine - iodobenzene diacetateSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588440.
- Supporting Information
-
References and Notes
- 1a Scott J. Bioactive Carbohydrates in Chemistry, Biochemistry and Biology . Ellis Horwood Publishers; Chichester: 1983
- 1b Thiem J. Klaffke W. Top. Curr. Chem. 1990; 154: 285
- 1c Butler MS. Nat. Prod. Rep. 2005; 22: 162
- 2a Acton EM. Fujiwara AN. Henry DW. J. Med. Chem. 1974; 17: 659
- 2b Chabala JC. Mrozik H. Tolman RL. Eskola P. Lusi A. Peterson LH. Woods MF. Fisher MH. Campbell WC. J. Med. Chem. 1980; 23: 1134
- 2c Matsumoto T. Yamaguchi H. Tanabe M. Yasui Y. Suzuki K. Tetrahedron Lett. 2000; 41: 8393
- 2d Debono M. Merkel KE. Molloy RM. Barnhart M. Presti E. Hunt AH. Hamill RL. J. Antibiot. 1984; 37: 85
- 3a Roush WR. Narayan S. Org. Lett. 1999; 1: 899
- 3b Roush WR. Bennett CE. J. Am. Chem. Soc. 1999; 121: 3541
- 3c Costantino V. Imperatore C. Fattorusso E. Mangoni A. Tetrahedron Lett. 2000; 41: 9177
- 3d Suzuki K. Sulikowski GA. Friesen RW. Danishefsky SJ. J. Am. Chem. Soc. 1990; 112: 8895
- 3e Pokorny B. Kosma P. Org. Lett. 2015; 17: 110
- 4a Ciment DM. Ferrier RJ. J. Chem. Soc. C 1966; 441
- 4b Lehmann J. Schröter E. Carbohydr. Res. 1972; 23: 359
- 4c EI Khadem HS. Swartz DL. Nelson JK. Berry L. Carbohydr. Res. 1977; 58: 230
- 4d Hadfield AF. Sartorelli AC. Carbohydr. Res. 1982; 101: 197
- 4e Bolitt V. Mioskowski C. Lee S.-G. Falck JR. J. Org. Chem. 1990; 55: 5812
- 4f Sabesan S. Neira S. J. Org. Chem. 1991; 56: 5468
- 4g Toshima K. Nagai H. Ushishi Y. Matsumura S. Synlett 1998; 1007
- 4h Rani S. Agarwal A. Vankar YD. Tetrahedron Lett. 2003; 44: 5001
- 5a Langenhan JM. Griffith BR. Thorson JS. J. Nat. Prod. 2005; 68: 1696
- 5b Křen V. řezanka T. FEMS Microbiol. Rev. 2008; 32: 858
- 6a Sherry BD. Loy RN. Toste FD. J. Am. Chem. Soc. 2004; 126: 4510
- 6b Tanaka H. Yoshizawa A. Chijiwa S. Ueda J. Takagi M. Shinya K. Takahashi T. Chem. Asian J. 2009; 4: 1114
- 6c Issa JP. Llod D. Steliotes E. Bennett CS. Org. Lett. 2013; 15: 4170
- 6d Kaneko M. Herzon SB. Org. Lett. 2014; 16: 2776
- 6e Balmon EI. Benito-Alifonso D. Coe DM. Alder RM. Mcgarrigle EM. Galan MC. Angew. Chem. Int. Ed. 2014; 126: 8329
- 6f Adhikari S. Baryal KN. Zhu D. Li X. Zhu J. ACS Catal. 2013; 3: 57
- 6g Zhu D. Baryal KN. Adhikari S. Zhu J. J. Am. Chem. Soc. 2014; 136: 3172
- 6h Baryal KN. Zhu J. Synlett 2014; 25: 308
- 7a Marzabadi CH. Franck RW. Tetrahedron 2000; 56: 8353
- 7b Hou D. Lowary TL. Carbohydr. Res. 2009; 344: 1911
- 7c Carmona AT. Moreno-Vargas AJ. Robina I. Curr. Org. Synth. 2008; 5: 33
- 8a Tatsuta K. Fujimoto K. Kinoshita M. Umezawa SA. Carbohydr. Res. 1977; 54: 8
- 8b Thiem J. Karl H. Tetrahedron Lett. 1978; 19: 4999
- 8c Kessler H. Kottenhahn M. Kling A. Kolar C. Angew. Chem., Int. Ed. Engl. 1987; 26: 888
- 8d Friesen RW. Danishefsky SJ. J. Am. Chem. Soc. 1989; 111: 6656
- 8e Wang H. Tao J. Cai X. Chen W. Zhao Y. Xu Y. Yao W. Zeng J. Wan Q. Chem. Eur. J. 2014; 20: 17319
- 9a Thiem J. Karl H. Schwentner J. Synthesis 1978; 696
- 9b Gammon DW. Kinfe HH. De Vos DE. Jacobs PA. Sels BF. Tetrahedron Lett. 2004; 45: 9533
- 9c Roush WR. Narayan S. Bennett CE. Briner K. Org. Lett. 1999; 1: 895
- 9d Saeeng R. Sirion U. Sirichan Y. Trakulsujaritchok T. Sahakitpichan PS. Heterocycles 2010; 81: 2569
- 9e Sirion U. Purintawarrakun S. Sahakitpicchan P. Saeeng R. Carbohydr. Res. 2010; 345: 2401
- 9f Kimura T. Takahashi D. Toshima K. J. Org. Chem. 2015; 80: 9552
- 9g Reddy TR. Rao DS. Babachary K. Kashyap S. Eur. J. Org. Chem. 2016; 291
- 10 General Procedures for Preparation of 2-Deoxy-2-iodo-α-glycosides To a solution of glycal (1 mmol), alcohol (10 mmol), and PhI(OAc)2 (1.2 mmol) in CH3CN (4 mL) was added I2 (0.6 mmol), the mixture was stirred at r.t. for 5 min. After addition of EtOAc (50 mL) to the reaction mixture, the organic phase was washed with sat. Na2S2O3, water and brine, dried over anhydrous Na2SO4, and concentrated. The residue was further purified by column chromatography to afford final product. Cyclohexyl 3,4,6-Tri-O-acetyl-2-deoxy-2-iodo-α-d-mannopyranoside (2a) 438.5 mg, yield 88%, colorless syrup. 1H NMR (400 MHz, CDCl3): δ = 5.37 (t, J = 9.7 Hz, 1 H), 5.32 (s, 1 H), 4.69 (dd, J = 9.4, 4.3 Hz, 1 H), 4.51 (dd, J = 4.2, 0.9 Hz, 1 H), 4.26–4.16 (m, 2 H), 4.16–4.09 (m, 1 H), 3.60 (ddd, J = 13.1, 9.1, 3.8 Hz, 1 H), 2.12 (s, 3 H), 2.10 (s, 3 H), 2.07 (s, 3 H), 1.92–1.84 (m, 2 H), 1.78–1.72 (m, 2 H), 1.59–1.50 (m, 1 H), 1.48–1.37 (m, 1 H), 1.36–1.20 (m, 4 H). 13C NMR (101 MHz, CDCl3): δ = 170.69, 169.87, 169.56, 99.59, 76.92, 69.20, 69.15, 67.86, 62.38, 33.19, 31.59, 30.70, 25.45, 24.10, 23.84, 20.98, 20.73, 20.68. i-Propyl 3,4-Di-O-acetyl-2-deoxy-2-iodo-α-d-arabinopyranoside (2k) 337.2 mg, yield 87%, white solid. 1H NMR (400 MHz, CDCl3): δ = 5.53 (s, 1 H), 5.19–5.04 (m, 1 H), 4.87 (d, J = 7.5 Hz, 1 H), 4.16 (dd, J = 7.5, 3.2 Hz, 1 H), 4.02–3.90 (m, 2 H), 3.81 (dd, J = 11.3, 9.4 Hz, 1 H), 2.20 (s, 3 H), 2.03 (s, 3 H), 1.24 (dd, J = 8.1, 6.3 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ = 169.68, 169.54, 99.64, 72.41, 70.23, 66.67, 61.76, 27.59, 23.29, 21.65, 20.80, 20.71. HRMS: m/z calcd for C12H20O6IH [M + H+]: 387.0299; found: 387.0302.
- 11a Ferrier RJ. Top. Curr. Chem. 2001; 215: 153
- 11b Ferrier RJ. Zubkov OA. Org. React. 2003; 62: 569
- 12 I2/PhI(OAc)2-Mediated Glycosylation Glycal (1 mmol), alcohol (10 mmol), I2 (0.6 mmol), and PhI(OAc)2 (1.2 mmol) in CH3CN (4 mL). I2/Cu(OAc)2-Mediated Glycosylation Glycal (0.4 mmol), alcohol (0.6 mmol), I2 (0.6 mmol), molecular sieves 4 Å (0.108 g) and Cu(OAc)2 (0.6 mmol) in CH2Cl2 (4 mL). These reaction solutions (diluted at 30 times by CHCl3) are measured by UV at 530 nm.
- 13 Shimizu M. Morita O. Itoh S. Fujisawa T. Tetrahedron Lett. 1992; 33: 7003
For preparation of 2-deoxy sugar from glycal, see: