Subscribe to RSS
DOI: 10.1055/s-0036-1588443
Synthesis of 2,6-Substituted 7-(Het)aryl-7-deazapurine Nucleobases (2,4-Disubstituted 5-(Het)aryl-pyrrolo[2,3-d]pyrimidines)
This work was supported by the Academy of Sciences of the Czech Republic (RVO 61388963 and the Praemium Academiae award to M. Hocek), by the Czech Science Foundation (16-0011785 to N. S. and M. H.), by the Czech Health Research Council (15-31984A to S. S.), and by Gilead Sciences, Inc.Publication History
Received: 29 March 2017
Accepted after revision: 02 May 2017
Publication Date:
20 June 2017 (online)
Published as part of the Special Topic Modern Strategies for Heterocycles Synthesis
Abstract
A series of 7-(het)aryl-7-deazapurine nucleobases (5-[(het)aryl]-2,4-disubstituted 7H-pyrrolo[2,3-d]pyrimidines) bearing NH2, OMe, SMe, or Me groups at position 6 and H, NH2, or Me at position 2 were prepared by the aqueous Suzuki–Miyaura cross-coupling reactions from SEM-protected 7-iodo-7-deazapurines with (het)arylboronic acids followed by deprotection. The 6-methoxy derivatives were further transformed into 7-deazahypoxanthines or 7-deazaguanines by O-demethylation reactions. Unlike their ribonucleoside counterparts, the 7-deazapurine nucleobases did not exert any significant cytostatic or antiviral effects.
Key words
deazapurines - pyrrolo[2,3-d]pyrimidines - nucleobases - Suzuki–Miyaura cross-coupling - deprotection - demethylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588443.
- Supporting Information
-
References
- 1a De Coen LM. Henbaert TS. A. Garcia D. Stevens CV. Chem. Rev. 2016; 116: 80
- 1b Tumkevicius S. Dodonova J. Chem. Heterocycl. Compd. 2012; 48: 258
- 2a Lawhorn BG. Philp J. Zhao Y. Louer C. Hammond M. Cheung M. Fries H. Graves AP. Shewchuk L. Wang L. Cottom JE. Qi H. Zhao H. Totoritis R. Zhang G. Schwartz B. Li H. Sweitzer S. Holt DA. Gatto GJ. Jr. Kallander LS. J. Med. Chem. 2015; 58: 7431
- 2b Henderson JL. Kormos BL. Hayward MM. Coffman KJ. Jasti J. Kurumbail RG. Wager TT. Verhoest PR. Noell GS. Chen Y. Needle E. Berger Z. Steyn SJ. Houle C. Hirst WD. Galatsis P. J. Med. Chem. 2015; 58: 419
- 2c O’Brien NJ. Brzozowski M. Buskes MJ. Deady LW. Abbott BM. Bioorg. Med. Chem. 2014; 22: 3879
- 2d Smith DE. Marquez I. Lokensgard ME. Rheingold AL. Hecht DA. Gustafson JL. Angew. Chem. Int. Ed. 2015; 54: 11754
- 2e Novotny CJ. Pollari S. Park JH. Lemmon MA. Shen W. Shokat KM. Nat. Chem. Biol. 2016; 12: 923
- 2f Lee J.-H. Shin SC. Seo SH. Seo YH. Jeong N. Kim C.-W. Kim EE. Keum G. Bioorg. Med. Chem. Lett. 2017; 27: 237
- 3a Tumkevicius S. Dodonova J. Kazlauskas K. Masevisius V. Skardziute L. Jursenas S. Tetrahedron Lett. 2010; 51: 3902
- 3b Urbonas RV. Poskus V. Bucevicius J. Dodonova J. Tumkevicius S. Synlett 2013; 24: 1383
- 3c Dodonova J. Tumkevicius S. RSC Adv. 2014; 4: 35966
- 3d Dodonova J. Skardziute L. Kazlauskas K. Jursenas S. Tumkevicius S. Tetrahedron 2012; 68: 329
- 3e Bucevicius J. Tumkevicius S. Synthesis 2015; 47: 2100
- 3f Prieur V. Rubio-Martınez J. Font-Bardia M. Guillaumet G. Pujol MD. Eur. J. Org. Chem. 2014; 1514
- 3g Prieur V. Heindler N. Rubio-Martinez J. Guillaumet G. Pujol MD. Tetrahedron 2015; 71: 1207
- 3h Krömer M. Klečka M. Slavětínská L. Klepetářová B. Hocek M. Eur. J. Org. Chem. 2014; 7203
- 3i Klečka M. Poštová Slavětínská L. Hocek M. Eur. J. Org. Chem. 2015; 7943
- 3j Sabat N. Slavětínská L. Klepetářová B. Hocek M. J. Org. Chem. 2016; 81: 9507
- 4 Sabat N. Nauš P. Matyašovský J. Dziuba D. Poštová Slavětínská L. Hocek M. Synthesis 2016; 48: 1029
- 5 Bourderioux A. Nauš P. Perlíková P. Pohl R. Pichová I. Votruba I. Džubák P. Konečný P. Hajdúch M. Stray KM. Wang T. Ray AS. Feng JY. Birkus G. Cihlar T. Hocek M. J. Med. Chem. 2011; 54: 5498
- 6 Snášel J. Nauš P. Dostál J. Hnízda A. Fanfrlík J. Brynda J. Bourderioux A. Dušek M. Dvořáková H. Stolaříková J. Zábranská H. Pohl R. Konečný P. Džubák P. Votruba I. Hajdúch M. Řezáčová P. Veverka V. Hocek M. Pichová I. J. Med. Chem. 2014; 57: 8268
- 7 Perlíková P. Rylová G. Nauš P. Elbert T. Tloušťová E. Bourderioux A. Poštová Slavětínská L. Motyka K. Doležal D. Znojek P. Nová A. Harvanová M. Džubák P. Šiller M. Hlaváč J. Hajdúch M. Hocek M. Mol. Cancer Ther. 2016; 15: 922
- 8 Nauš P. Caletková O. Konečný P. Džubák P. Bogdanová K. Kolář M. Vrbková J. Slavětínská L. Tloušťová E. Perlíková P. Hajdúch M. Hocek M. J. Med. Chem. 2014; 57: 1097
- 9 Review: Shaughnessy KH. Molecules 2015; 20: 9419
- 10 Čapek P. Vrábel M. Hasník Z. Pohl R. Hocek M. Synthesis 2006; 3515
- 11a Witten JP. Matthews DP. McCarthy JR. J. Org. Chem. 1986; 51: 1891
- 11b Muchowski JM. Solas DR. J. Org. Chem. 1984; 49: 203
- 12 Chen YL. Duraiswamy J. Kondreddi RR. Yin Z. WO 2010015637, 2010
- 13 Keicher JD. Roberts CD. Reinhard LS. J. Zheng X. Prhavc M. Rajwanshi VK. Griffith RC. Kim CU. US 2009048189, 2009
- 14 Seela F. Peng X. Synthesis 2004; 1203
- 15 Gangjee A. Zhao Y. Lin L. Raghavan S. Roberts EG. Risinger AL. Hamel E. Mooberry SL. J. Med. Chem. 2010; 53: 8116
- 16 Zhou W. Ercan D. Janne PA. Gray NS. Bioorg. Med. Chem. Lett. 2011; 21: 638
- 17 Thiyagarajan A. Salim MT. Balaraju T. Bal C. Baba M. Sharon A. Bioorg. Med. Chem. Lett. 2012; 22: 7742
- 18 Olah GA. Narang SC. Gupta BG. B. Malhotra R. J. Org. Chem. 1979; 44: 1247
Reviews:
Examples: