RSS-Feed abonnieren
DOI: 10.1055/s-0036-1588462
tert-Butyl Hypochlorite Induced Cyclization of Ethyl 2-(N-Arylcarbamoyl)-2-iminoacetates
The authors thank the National Natural Science Foundation of China (No. 21372108) for financial supportPublikationsverlauf
Received: 12. April 2017
Accepted after revision: 22. Mai 2017
Publikationsdatum:
03. Juli 2017 (online)
Published as part of the Special Topic Modern Cyclization Strategies in Synthesis
Abstract
Ethyl 2-(N-arylcarbamoyl)-2-iminoacetates can be transformed into the corresponding quinoxalin-2-ones in high yield by using the oxidation system of tert-butyl hypochlorite, tetrabutylammonium iodide and tetrabutylammonium chloride. Oxygen exhibits a beneficial effect on the reaction. The reaction is proposed to follow an iminyl radical cyclization mechanism where azaspirocyclohexadienylperoxyl radical is formed as a key intermediate. The quinoxalin-2-one is derived from the azaspirocyclohexadienylperoxyl radical via concurrent oxygen extrusion and rearrangement.
Key words
cyclization - radical reaction - iminyl radical - quinoxalin-2-ones - oxygen - peroxyl radicalSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588462.
- Supporting Information
-
References
- 1a Studer A. Bossart M. Homolytic Aromatic Substitutions . In Radicals in Organic Synthesis . Vol. 2. Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001: 62-80
- 1b Bowman WR. Storey JM. D. Chem. Soc. Rev. 2007; 36: 1803
- 1c Sun C.-L. Shi Z.-J. Chem. Rev. 2014; 114: 9219
- 1d Yu J.-T. Pan C. Chem. Commun. 2016; 52: 2220
- 1e Gurry M. Aldabbagh F. Org. Biomol. Chem. 2016; 14: 3849
- 2a Roman DS. Takahashi Y. Charette AB. Org. Lett. 2011; 13: 3242
- 2b Beaulieu L.-PB. Roman DS. Vallée F. Charette AB. Chem. Commun. 2012; 48: 8249
- 3a Studer A. Bossart M. Tetrahedron 2001; 57: 9649
- 3b Chen Z.-M. Zhang X.-M. Tu Y.-Q. Chem. Soc. Rev. 2015; 44: 5220
- 4a de Turiso FG.-L. Curran DP. Org. Lett. 2005; 7: 151
- 4b Lanza T. Leardini R. Minozzi M. Nanni D. Spagnolo P. Zanardi G. Angew. Chem. Int. Ed. 2008; 47: 9439
- 5a Fallis AG. Brinza IM. Tetrahedron 1997; 53: 17543
- 5b Stella L. Nitrogen-Centered Radicals . In Radicals in Organic Synthesis . Vol. 2. Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001: 407-426
- 5c Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
- 5d Kitamura M. Narasaka K. Bull. Chem. Soc. Jpn. 2008; 81: 539
- 5e Chiba S. Bull. Chem. Soc. Jpn. 2013; 86: 1400
- 5f Walton JC. Acc. Chem. Res. 2014; 47: 1406
- 6 Bencivenni G. Lanza T. Leardini R. Minozzi M. Nanni D. Spagnolo P. Zanardi G. J. Org. Chem. 2008; 73: 4721
- 7 Li Z.-S. Wang W.-X. Yang J.-D. Wu Y.-W. Zhang W. Org. Lett. 2013; 15: 3820
- 8a Li D. Yang T. Su H. Yu W. Adv. Synth. Catal. 2015; 357: 2529
- 8b Li D. Ma H. Yu W. Adv. Synth. Catal. 2015; 357: 3696
- 8c Yang T. Zhu H. Yu W. Org. Biomol. Chem. 2016; 14: 3376
- 9 For similar observations in the case of reactions under copper catalysis, see: Chiba S. Zhang L. Lee J.-Y. J. Am. Chem. Soc. 2010; 132: 7266
- 10 Reck R. Jochims JC. Chem. Ber. 1982; 115: 1494
- 11 Tanner DD. Gidley GC. Das N. Rowe JE. Potter A. J. Am. Chem. Soc. 1984; 106: 5261
- 12 Noack M. Göttlich R. Eur. J. Org. Chem. 2002; 3171
- 13 Boukouvalas J. Haynes RK. Peroxyl Radicals in Synthesis . In Radicals in Organic Synthesis . Vol. 2. Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001: 455-484
- 14a Porter NA. Acc. Chem. Res. 1986; 19: 262
- 14b Pratt DA. Tallman KA. Porter NA. Acc. Chem. Res. 2011; 44: 458
- 14c Yin H. Xu L. Porter NA. Chem. Rev. 2011; 111: 5944
- 15a Courtneidge JL. Bush M. J. Chem. Soc., Perkin Trans. 1 1992; 1531
- 15b Porter NA. Mills KA. Carter RL. J. Am. Chem. Soc. 1994; 116: 6690
- 16 Walling C. Heaton L. J. Am. Chem. Soc. 1965; 87: 38
- 17a Bravo A. Bjørsvik H.-R. Fontana F. Liguori L. Minisci F. J. Org. Chem. 1997; 62: 3849
- 17b Shchepin R. Möller MN. Kim HH. Hatch DM. Bartesaghi S. Kalyanaraman B. Radi R. Porter NA. J. Am. Chem. Soc. 2010; 132: 17490
- 19 Kornblum N. DeLaMare HE. J. Am. Chem. Soc. 1951; 73: 880
- 20a Zhang F. Du P. Chen J. Wang H. Luo Q. Wan X. Org. Lett. 2014; 16: 1932
- 20b Cheng J.-K. Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42
- 20c Guchhait SK. Chaudhary V. Rana VA. Priyadarshani G. Kandekar S. Kashyap M. Org. Lett. 2016; 18: 1534
- 20d Luo Q. Liu C. Tong J. Shao Y. Shan W. Wang H. Zheng H. Cheng J. Wan X. J. Org. Chem. 2016; 81: 3103
- 21a Walling C. Kurkov V. J. Am. Chem. Soc. 1966; 88: 4727
- 21b Walling C. Mintz MJ. J. Am. Chem. Soc. 1967; 89: 1515
- 22 Carey FA. Sundberg RJ. Advanced Organic Chemistry . 5th ed. Springer; New York: 2007: 1001
- 23 Benincori T. Pagani SB. Fusco R. Sannicolo F. J. Chem. Soc., Perkin Trans. 1 1988; 2721
- 24 Harayama T. Tezuka Y. Taga T. Yoneda F. J. Chem. Soc., Perkin Trans. 1 1987; 75
For several recent examples of the Kornblum–DeLaMare reaction, see: