Synthesis 2017; 49(21): 4887-4892
DOI: 10.1055/s-0036-1588497
paper
© Georg Thieme Verlag Stuttgart · New York

Aqueous-Medium Selective Modification of Cysteine and Related Thiols with Tricyclic Oxygen-Heterocycles

Eito Yoshioka
School of Pharmacy, Hyogo University of Health Sciences, Minatojima, Kobe 650-8530, Japan   Email: miyabe@huhs.ac.jp
,
Yuya Goto
School of Pharmacy, Hyogo University of Health Sciences, Minatojima, Kobe 650-8530, Japan   Email: miyabe@huhs.ac.jp
,
Ikko Minato
School of Pharmacy, Hyogo University of Health Sciences, Minatojima, Kobe 650-8530, Japan   Email: miyabe@huhs.ac.jp
,
Hideto Miyabe*
School of Pharmacy, Hyogo University of Health Sciences, Minatojima, Kobe 650-8530, Japan   Email: miyabe@huhs.ac.jp
› Author Affiliations
This work was partially supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (C) Grant Number 15K07879 (to E.Y.).
Further Information

Publication History

Received: 17 May 2017

Accepted after revision: 19 June 2017

Publication Date:
25 July 2017 (online)


Abstract

The utility of tricyclic oxygen-heterocycles as a reagent for the thiol-selective modification toward bioconjugation was demonstrated by the use of l-cysteine, homocysteine, captopril, and glutathione as a nucleophile having a thiol group. These trapping reactions proceeded under the mild and aqueous reaction conditions.

Supporting Information

 
  • References


    • Recent reviews for bioconjugation chemistry, see:
    • 1a Akkapeddi P. Azizi S.-A. Freedy AM. Cal PM. S. D. Gois PM. P. Bernardes GJ. L. Chem. Sci. 2016; 7: 2954
    • 1b Agarwal P. Bertozzi CR. Bioconjugate Chem. 2015; 26: 176
    • 1c Patterson DM. Nazarova LA. Prescher JA. ACS Chem. Biol. 2014; 9: 592
    • 1d Ramil CP. Lin Q. Chem. Commun. 2013; 49: 11007

      Reviews for site-selective modification, see:
    • 2a Hu W.-Y. Berti F. Adamo R. Chem. Soc. Rev. 2016; 45: 1691
    • 2b Koniev O. Wagner A. Chem. Soc. Rev. 2015; 44: 5495
    • 2c Spicer CD. Davies BG. Nat. Commun. 2014;  5: 4740
    • 2d Takaoka Y. Ojida A. Hamachi I. Angew. Chem. Int. Ed. 2013; 52: 4088

      Cysteine-selective modification, see:
    • 3a Brown SP. Smith AB. III. J. Am. Chem. Soc. 2015; 137: 4034
    • 3b Toda N. Asano S. Barbas CF. III. Angew. Chem. Int. Ed. 2013; 52: 12592 Tryptophan-selective modification, see
    • 3c Seki Y. Ishiyama T. Sasaki D. Abe J. Sohma Y. Oisaki K. Kanai M. J. Am. Chem. Soc. 2016; 138: 10798
    • 3d Foettinger A. Melmer M. Leitner A. Lindner W. Bioconjugate Chem. 2007; 18: 1678

    • Tyrosine-selective modification, see:
    • 3e Ban H. Gavrilyuk J. Barbas CF. III. J. Am. Chem. Soc. 2010; 132: 1523

    • Histidine-selective modification, see:
    • 3f Takaoka Y. Tsutsumi H. Kasagi N. Nakata E. Hamachi I. J. Am. Chem. Soc. 2006; 128: 3273
    • 4a Fujita Y. Murakami Y. Noda A. Miyoshi S. Bioconjugate Chem. 2017; 28: 642
    • 4b Boswell CA. Marik J. Elowson MJ. Reyes NA. Ulufatu S. Bumbaca D. Yip V. Mundo EE. Majidy N. Van Hoy M. Goriparthi SN. Trias A. Gill HS. Williams SP. Junutula JR. Fielder PJ. Khawli LA. J. Med. Chem. 2013; 56: 9418
    • 4c Zhang Y. Bhatt VS. Sun G. Wang PG. Palmer AF. Bioconjugate Chem. 2008; 19: 2221
    • 5a Swanwick RS. Daines AM. Tey L.-H. Flitsch SL. Allemann RK. ChemBioChem 2005; 6: 1338
    • 5b Kim JR. Yoon HW. Kwon KS. Lee SR. Rhee SG. Anal. Biochem. 2000; 283: 214
    • 6a Chatterjee C. Muir TW. J. Biol. Chem. 2010; 285: 11045
    • 6b Simon MD. Chu F. Racki LR. de la Cruz CC. Burlingame AL. Panning B. Narlikar GJ. Shokat KM. Cell 2007; 128: 1003
    • 7a Lopez-Jaramillo FJ. Ortega-Muñoz M. Megia-Fernandez A. Hernandez-Mateo F. Santoyo-Gonzalez F. Bioconjugate Chem. 2012; 23: 846
    • 7b Ovaa H. van Swieten PF. Kessler BM. Leeuwenburgh MA. Fiebiger E. van den Nieuwendijk AM. C. H. Galardy PJ. van der Marel GA. Ploegh HL. Overkleeft HS. Angew. Chem. Int. Ed. 2003; 42: 3626
    • 8a Yoshioka E. Kohtani S. Miyabe H. Angew. Chem. Int. Ed. 2011; 50: 6638
    • 8b Yoshioka E. Kohtani S. Miyabe H. Molbank 2015; M841
  • 9 Yoshioka E. Nishimura M. Nakazawa T. Kohtani S. Miyabe H. J. Org. Chem. 2015; 80: 8464
  • 10 The method for preparing tricyclic oxygen-heterocycles such as 1 and 10 was reported in our previous paper; see ref. 9
  • 11 The adducts 6, 7, 8, 9, 11, 12, and 13 were obtained as ca. 1:1 diastereomeric mixtures.
  • 12 The decomposition of adduct 7 proceeded gradually during the purification using flash silica gel column chromatography or the 1H NMR measurement. 1H NMR spectrum of roughly purified 7 is provided in the Supporting Information
  • 13 Li M. Zhang B. Gu Y. Green Chem. 2012; 14: 2421
  • 14 Markus J. Bernd P. Chem. Eur. J. 2011; 17: 10417
  • 15 Kishikawa K. Tsuru I. Kohmoto S. Yamamoto M. Yamada K. Chem. Lett. 1994; 1605